Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomorphous substitution clays

In addition to the high density of isomorphic substitutions, clays have several other important features which would tend to maximize the possibility of contributions from energy storage to their surface chemistry. [Pg.13]

Montmorillonite is a laminar and expandable clay with wet binding properties and widely available throughout the world. The layers have permanent negative charges due to isomorphic substitutions. The scientific interest of montmorillonite lies in its physical and chemical properties as well as its low price. Consequently, the industrial application of montmorillonite is an attractive process [1]. On the other hand, among numerous reports published so far, crystallization of zeolite Beta draws much attention because of its unique characteristics, in particular, acidity and acid catalysis. It is reasonable to conceive that a catalyst system based on Beta/montmorillonite composite with suitable composition should provide a good catalytic capacity. [Pg.137]

Figure 3.4. Two types of isomorphous substitution. The middle structures are two-dimensional representations of clay without isomorphous substitution. On the left is an isomorphous substitution of Mg for A1 in the aluminum octahedral sheet. On the right is isomorphous A1 substitution for Si in the silicon tetrahedral sheet. Clays are three-dimensional and -OH on the surface may be protonated or deprotonated depending on the pH of the surrounding soil solution. There will be additional water molecules and ions between many clay structures. Note that clay structures are three-dimensional and these representations are not intended to accurately represent the three-dimensional nature nor the actual bond lengths also, the brackets are not intended to represent crystal unit cells. Figure 3.4. Two types of isomorphous substitution. The middle structures are two-dimensional representations of clay without isomorphous substitution. On the left is an isomorphous substitution of Mg for A1 in the aluminum octahedral sheet. On the right is isomorphous A1 substitution for Si in the silicon tetrahedral sheet. Clays are three-dimensional and -OH on the surface may be protonated or deprotonated depending on the pH of the surrounding soil solution. There will be additional water molecules and ions between many clay structures. Note that clay structures are three-dimensional and these representations are not intended to accurately represent the three-dimensional nature nor the actual bond lengths also, the brackets are not intended to represent crystal unit cells.
Another characteristic of 2 1 clays is isomorphous substitution, where iso means same and morphous means shape. During the formation of clay, cations other than aluminum and silicon become incorporated into the structure. In order for this to work and still ensure a stable clay, the cation must be about the same size as either aluminum or silicon, hence the term isomorphous. There are a limited number of cations that satisfy this requirement. For silicon, aluminum as Al3+ and iron as Fe3+ will tit without causing too much distortion of the clay structure. For aluminum, iron as Fe3+, magnesium as Mg2+, zinc as Zn2+, and iron as Fe2+ will fit without causing too much structural distortion (see Figure 3.4). [Pg.68]

The Smectite Clays. The smectite-type clays are distinctive in that they expand and cause significant destruction to synthetic (human-made) structures. In this type of 2 1 clay, isomorphous substitution occurs in the aluminum sheet. If there is substitution of lower-oxidation-state metal such as magnesium, there will be an unsatisfied pair of bonding electrons in the interior of the crystal and there will be no noticeable change in the surface. Because the charge is in the interior of the crystal, its attraction for cations is diminished by distance. Thus, smectite crystals are not held together strongly by cations and are able to incorporate more water and ions between sheets when the environment is wet and less when it is dry. [Pg.69]

The surfaces of colloidal particles are often charged and these changes can arise from a number of sources. Chemically bound ionogenic species may be found on the surface of particles such as rubber or paint latex particles. Charged species may be physically adsorbed if ionic surface active materials, for example, have been added. A charged surface may occur on a crystal lattice. An example is the isomorphous substitution of lower valency cations such as aluminium for silicon in the lattice structure of clays. A further example is the adsorption of lattice ions... [Pg.52]

Since adsorption at a mineral surface is a replacement process, we would expect mineral surfaces with weak affinity for water to have the strongest affinity for hydrophobic solutes. Infrared spectroscopy shows that siloxane surfaces on clays with little isomorphic substitution form weaker hydrogen bonds than water forms with itself (64), which corresponds to one of the definitions of a hydrophobic surface offered by Texter et al. (65) Therefore,... [Pg.206]

Because of isomorphic substitution of ions in the crystalline lattice of layer silicates, many clay surfaces have a net negative charge which results in the abi-... [Pg.111]

As shown in Figure 14.4, each clay mineral exhibits a large range in the type and degree of isomorphic substitution. The central silicon atom in the tetrahedral layers can be replaced by aluminum, alkali, alkaline earth, and trace metal atoms. In the octahedral layers, the central Al and Mg atoms can be similarly replaced. The large range in composition within each mineral type reflects variability in the environmental conditions under which crystallization and chemical weathering occur. Thus, the... [Pg.356]

After delivery to the ocean, clay minerals react with seawater. The processes that alter the chemical composition of the terrigenous clay minerals during the first few months of exposure are termed halmyrolysis. These include (1) cation exchange, (2) fixation of ions into inaccessible sites, and (3) some isomorphic substitutions. Another important transfiarmation is flocculation of very small (colloidal-size) clay particles into larger ones. [Pg.362]

Clay minerals have a permanent negative charge due to isomorphous substitutions or vacancies in their structure. This charge can vary from zero to >200cmol kg" (centimoles/kg) and must be balanced by cations (counter-ions) at or near the mineral surface (Table 5.1), which greatly affect the interfacial properties. Low counter-ion charge, low electrolyte concentration, or high dielectric constant of the solvent lead to an increase in interparticle electrostatic repulsion forces, which in turn stabilize colloidal suspensions. An opposite situation supports interparticle... [Pg.93]


See other pages where Isomorphous substitution clays is mentioned: [Pg.221]    [Pg.221]    [Pg.329]    [Pg.167]    [Pg.654]    [Pg.655]    [Pg.248]    [Pg.157]    [Pg.165]    [Pg.147]    [Pg.67]    [Pg.68]    [Pg.179]    [Pg.362]    [Pg.472]    [Pg.113]    [Pg.113]    [Pg.356]    [Pg.358]    [Pg.227]    [Pg.313]    [Pg.42]    [Pg.97]    [Pg.101]    [Pg.102]    [Pg.341]    [Pg.532]    [Pg.95]    [Pg.87]    [Pg.502]    [Pg.424]    [Pg.429]    [Pg.404]    [Pg.356]    [Pg.336]    [Pg.140]    [Pg.173]    [Pg.174]    [Pg.524]    [Pg.117]   
See also in sourсe #XX -- [ Pg.346 ]

See also in sourсe #XX -- [ Pg.4 , Pg.7 , Pg.8 , Pg.10 , Pg.11 , Pg.22 ]




SEARCH



Clay minerals isomorphic substitution

Isomorphic

Isomorphism

Isomorphism substitution

Isomorphous

Isomorphs

Substitutional isomorphism

© 2024 chempedia.info