Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoleucine degradative pathway

Figure 9-4. Metabolism of the branched-chain amino acids. The first two reactions, transamination and oxidative decarboxylation, are catalyzed by the same enzyme in all cases. Details are provided only for isoleucine. Further metabolism of isoleucine and valine follows a common pathway to propionyl CoA. Subsequent steps in the leucine degradative pathway diverge to yield acetoacetate. An intermediate in the pathway is 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which is a precursor for cytosolic cholesterol biosynthesis. Figure 9-4. Metabolism of the branched-chain amino acids. The first two reactions, transamination and oxidative decarboxylation, are catalyzed by the same enzyme in all cases. Details are provided only for isoleucine. Further metabolism of isoleucine and valine follows a common pathway to propionyl CoA. Subsequent steps in the leucine degradative pathway diverge to yield acetoacetate. An intermediate in the pathway is 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which is a precursor for cytosolic cholesterol biosynthesis.
The degradative pathways of valine and isoleucine resemble that of leucine. After transamination and oxidative decarboxylation to yield a CoA derivative, the subsequent reactions are like those of fatty acid oxidation. Isoleucine yields acetyl CoA and propionyl CoA, whereas valine yields CO2 and propionyl CoA. The degradation of leucine, valine, and isoleucine validate a point made earlier (Chapter 14) the number of reactions in metabolism is large, but the number of kinds of reactions is relatively small. The degradation of leucine, valine, and isoleucine provides a striking illustration of the underlying simplicity and elegance of metabolism. [Pg.968]

Isoleucine degradation. Isoleucine is degraded to acetyl CoA and succinyl CoA. Suggest a plausible reaction sequence, based on reactions discussed in the text, for this degradation pathway. [Pg.981]

The degradative pathways of valine and isoleucine resemble that of leucine. After transamination and oxidative decarboxylation to yield a CoA derivative, the subsequent reactions are like those of fatty acid oxidation. Isoleucine yields acetyl CoA and propionyl CoA, whereas valine yields... [Pg.670]

Isoleucine and valine. The first four reactions in the degradation of isoleucine and valine are identical. Initially, both amino acids undergo transamination reactions to form a-keto-/T methyl valerate and a-ketoiso valerate, respectively. This is followed by the formation of CoA derivatives, and oxidative decarboxylation, oxidation, and dehydration reactions. The product of the isoleucine pathway is then hydrated, dehydrogenated, and cleaved to form acetyl-CoA and propionyl-CoA. In the valine degradative pathway the a-keto acid intermediate is converted into propionyl-CoA after a double bond is hydrated and CoA is removed by hydrolysis. After the formation of an aldehyde by the oxidation of the hydroxyl group, propionyl-CoA is produced as a new thioester is formed during an oxidative decarboxylation. [Pg.519]

The essential amino acids methionine, valine, isoleucine, and threonine are degraded to form propionyl-CoA. The conversion of propionyl CoA to succinyl CoA is common to their degradative pathways. Propionyl CoA is also generated from the oxidation of odd-chain fatty acids. [Pg.722]

Synthesis of glutamate removes a-ketoglutarate from the TCA cycle, thereby decreasing the regeneration of oxaloacetate in the TCA cycle. Because oxaloacetate is necessary for the oxidation of acetyl CoA, oxaloacetate must be replaced by anapierotic reactions. There are two major types of anapierotic reactions (1) pyruvate carboxylase and (2) the degradative pathway of the branched-chain amino acids, valine and isoleucine, which contribute succinyl CoA to the TCA cycle. This pathway uses B12 (but not folate) in the reaction catalyzed by methylmalonyl CoA mutase. [Pg.899]

The degradative pathway developed for isoleucine has many similarities to those for leucine and valine. [Pg.545]

They are defects in the degradation pathways of leucine, isoleucine, and valine. These conditions are usually diagnosed by examining organic acids in urine with abnormal metabolites also notable on acylcamitine profile. Organic acidemias comprise a variety of disorders and include methylmalonic acidemia (MMA), propionic acidemia (PROP), isovaleric acidemia (IVA), glutaric acidemia type 1 (GA-1), 3-methylcrotonyl carboxylase deficiency (3-MCC), 3-methylglutaconic acidemia (3-MGA), and vitamin B12 uptake, transport, and synthesis defects. [Pg.188]

Fig. 6.1. The L-leucine degradative pathway. Reactions for which inherited metabolic disorders have not been conclusively identified include A, leucine-isoleucine aminotransferase and the majority of the 3-methylglutaconic acidurias (6.6-6.7). 6.1, Branched-chain a-ketoacid dehydrogenase (BCKD) complex, a reaction also occurring in the initial steps of L-isoleucine and L-valine degradation 6.2, isovaleryl-CoA dehydrogenase 6.3, 3-methylcrotonyl-CoA carboxylase 6.4, 3-methylglutaconyl-CoA hydra-tase 6.8, HMG-CoA lyase. Pathologic urinary metabolites used as specific markers in the differential diagnosis are presented in squares. Abbreviation Co A, coenzyme A... Fig. 6.1. The L-leucine degradative pathway. Reactions for which inherited metabolic disorders have not been conclusively identified include A, leucine-isoleucine aminotransferase and the majority of the 3-methylglutaconic acidurias (6.6-6.7). 6.1, Branched-chain a-ketoacid dehydrogenase (BCKD) complex, a reaction also occurring in the initial steps of L-isoleucine and L-valine degradation 6.2, isovaleryl-CoA dehydrogenase 6.3, 3-methylcrotonyl-CoA carboxylase 6.4, 3-methylglutaconyl-CoA hydra-tase 6.8, HMG-CoA lyase. Pathologic urinary metabolites used as specific markers in the differential diagnosis are presented in squares. Abbreviation Co A, coenzyme A...
Fatty acids with odd numbers of carbon atoms are rare in mammals, but fairly common in plants and marine organisms. Humans and animals whose diets include these food sources metabolize odd-carbon fatty acids via the /3-oxida-tion pathway. The final product of /3-oxidation in this case is the 3-carbon pro-pionyl-CoA instead of acetyl-CoA. Three specialized enzymes then carry out the reactions that convert propionyl-CoA to succinyl-CoA, a TCA cycle intermediate. (Because propionyl-CoA is a degradation product of methionine, valine, and isoleucine, this sequence of reactions is also important in amino acid catabolism, as we shall see in Chapter 26.) The pathway involves an initial carboxylation at the a-carbon of propionyl-CoA to produce D-methylmalonyl-CoA (Figure 24.19). The reaction is catalyzed by a biotin-dependent enzyme, propionyl-CoA carboxylase. The mechanism involves ATP-driven carboxylation of biotin at Nj, followed by nucleophilic attack by the a-carbanion of propi-onyl-CoA in a stereo-specific manner. [Pg.791]

The carbon skeletons of methionine, isoleucine, threonine, and valine are degraded by pathways that yield suc-cinyl-CoA (Fig. 18-27), an intermediate of the citric acid cycle. Methionine donates its methyl group to one of several possible acceptors through S-adenosytmethionine,... [Pg.682]

These amino acids are converted to succinyl-CoA isoleucine also contributes two of its carbon atoms to acetyl-CoA (see Fig. 18-21). The pathway of threonine degradation shown here occurs in humans a pathway found in other organisms is shown in Figure 18-19. [Pg.682]

Free amino acids are further catabolized into several volatile flavor compounds. However, the pathways involved are not fully known. A detailed summary of the various studies on the role of the catabolism of amino acids in cheese flavor development was published by Curtin and McSweeney (2004). Two major pathways have been suggested (1) aminotransferase or lyase activity and (2) deamination or decarboxylation. Aminotransferase activity results in the formation of a-ketoacids and glutamic acid. The a-ketoacids are further degraded to flavor compounds such as hydroxy acids, aldehydes, and carboxylic acids. a-Ketoacids from methionine, branched-chain amino acids (leucine, isoleucine, and valine), or aromatic amino acids (phenylalanine, tyrosine, and tryptophan) serve as the precursors to volatile flavor compounds (Yvon and Rijnen, 2001). Volatile sulfur compounds are primarily formed from methionine. Methanethiol, which at low concentrations, contributes to the characteristic flavor of Cheddar cheese, is formed from the catabolism of methionine (Curtin and McSweeney, 2004 Weimer et al., 1999). Furthermore, bacterial lyases also metabolize methionine to a-ketobutyrate, methanethiol, and ammonia (Tanaka et al., 1985). On catabolism by aminotransferase, aromatic amino acids yield volatile flavor compounds such as benzalde-hyde, phenylacetate, phenylethanol, phenyllactate, etc. Deamination reactions also result in a-ketoacids and ammonia, which add to the flavor of... [Pg.194]

Acetyl CoA serves as a common point of convergence for the major pathways of fuel oxidation. It is generated directly from the (3-oxidation of fatty acids and degradation of the ketone bodies (3-hydroxybutyrate and acetoacetate (Fig. 20.14). It is also formed from acetate, which can arise from the diet or from ethanol oxidation. Glucose and other carbohydrates enter glycolysis, a pathway common to all cells, and are oxidized to pyruvate. The amino acids alanine and serine are also converted to pyruvate. Pyruvate is oxidized to acetyl CoA by the pyruvate dehydrogenase complex. A number of amino acids, such as leucine and isoleucine are also oxidized to acetyl CoA. Thus, the final oxidation of acetyl CoA to CO2 in the TCA cycle is the last step in all the major pathways of fuel oxidation. [Pg.372]

F. 20.19. Major anaplerotic pathways of the TCA cycle. 1 and 3 (blue arrows) are the two major anabohc pathways. (1) Pyruvate carboxylase (2) Glutamate is reversibly converted to a-ketoglutarate by transaminases (TA) and glutamate dehydrogenase (GDH) in many tissues. (3) The carbon skeletons of valine and isoleucine, a 3-carbon unit from odd chain fatty acid oxidation, and a number of other comprounds enter the TCA cycle at the level of succinyl CoA. Other amino acids are also degraded to fumarate (4) and oxaloacetate (5), principally in the liver. [Pg.376]

The propionyl CoA to succinyl CoA pathway is a major anaplerotic route for the TCA cycle and is used in the degradation of valine, isoleucine, and a number of other compounds. In the liver, this route provides precursors of oxaloacetate, which is converted to glucose. Thus, this small proportion of the odd-carbon-number fatty acid chain can be converted to glucose. In contrast, the acetyl CoA formed from (3-oxidation of even-chain-number fatty acids in the liver either enters the TCA cycle, where it is principally oxidized to CO2, or is converted to ketone bodies. [Pg.426]

Provided that the fatty acid contains an even number of C-atoms, it can be totally degraded to acetyl-CoA by p-oxidation. If the fatty acid contains an uneven number of C-atoms, however, the stepwise removal of two carbons at a time by p-oxidation eventually leads to a Cj compound, i.e. propionyl-CoA, which must be metabolized by alternative pathways. These pathways are shown in Rg.2 considerable quantities of propionyl-CoA also arise from the degradation of the branched-chain amino acids, isoleucine and valine (see L-leucine). The main pathway involves carboxylation of propionyl-CoA to methylma-lonyl-CoA, followed by the vitamin B]2-dependent isomerization of methylmalonyl-CoA to sucdnyl-... [Pg.219]

L-valine is built by a pathway resembling L-isoleucine formation (Fig. 196). It may be degraded to succinyl CoA, as shown in Fig. 197. [Pg.337]


See other pages where Isoleucine degradative pathway is mentioned: [Pg.214]    [Pg.683]    [Pg.683]    [Pg.217]    [Pg.285]    [Pg.214]    [Pg.683]    [Pg.683]    [Pg.217]    [Pg.285]    [Pg.688]    [Pg.204]    [Pg.235]    [Pg.333]    [Pg.966]    [Pg.666]    [Pg.678]    [Pg.688]    [Pg.724]    [Pg.178]    [Pg.127]    [Pg.178]    [Pg.10]    [Pg.462]    [Pg.105]    [Pg.672]    [Pg.1391]    [Pg.45]    [Pg.564]    [Pg.432]    [Pg.513]    [Pg.388]    [Pg.231]    [Pg.672]    [Pg.105]   
See also in sourсe #XX -- [ Pg.545 ]




SEARCH



Degradative pathway

Isoleucin

Isoleucinate

Isoleucine

© 2024 chempedia.info