Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isocyanate continued

TABLE 2.1 Examples of Polymer-Forming Reactions of Isocyanates (Continued)... [Pg.113]

There are three types of TAP emissions continuous, intermittent, and accidental. Both routine emissions associated with a batch process or a continuous process that is operated only occasionally can be intermittent sources. A dramatic example of an accidental emission was the release of methyl isocyanate [624-83-9] in Bhopal, India. As a result of this accident, the U.S. Congress created Tide III, a free-standing statute included in the Superfund Amendments and Reauthorization Act (SARA) of 1986. Title III provides a mechanism by which the pubHc can be informed of the existence, quantities, and releases of toxic substances, and requires the states to develop plans to respond to accidental releases of these substances. Eurther, it requires anyone releasing specific toxic chemicals above a certain threshold amount to aimuaHy submit a toxic chemical release form to EPA. At present, there are 308 specific chemicals subject to Title III regulation (37). [Pg.374]

Another type of polyol often used in the manufacture of flexible polyurethane foams contains a dispersed soHd phase of organic chemical particles (234—236). The continuous phase is one of the polyols described above for either slab or molded foam as required. The dispersed phase reacts in the polyol using an addition reaction with styrene and acrylonitrile monomers in one type or a coupling reaction with an amine such as hydrazine and isocyanate in another. The soHds content ranges from about 21% with either system to nearly 40% in the styrene—acrylonitrile system. The dispersed soHds confer increased load bearing and in the case of flexible molded foams also act as a ceU opener. [Pg.417]

These oligomerization steps result in a continuous increase in viscosity of the desired isocyanate and ultimately cause sohdification. [Pg.453]

Figure 4a represents interfacial polymerisation encapsulation processes in which shell formation occurs at the core material—continuous phase interface due to reactants in each phase diffusing and rapidly reacting there to produce a capsule shell (10,11). The continuous phase normally contains a dispersing agent in order to faciUtate formation of the dispersion. The dispersed core phase encapsulated can be water, or a water-immiscible solvent. The reactant(s) and coreactant(s) in such processes generally are various multihmctional acid chlorides, isocyanates, amines, and alcohols. For water-immiscible core materials, a multihmctional acid chloride, isocyanate or a combination of these reactants, is dissolved in the core and a multihmctional amine(s) or alcohol(s) is dissolved in the aqueous phase used to disperse the core material. For water or water-miscible core materials, the multihmctional amine(s) or alcohol(s) is dissolved in the core and a multihmctional acid chloride(s) or isocyanate(s) is dissolved in the continuous phase. Both cases have been used to produce capsules. [Pg.320]

The polyamide copolymer of dodecanoic acid with methylenedi(cyclohexylamine) (MDCHA, PACM) was sold as continuous filament yam fiber under the tradename QIANA. As late as 1981, over 145,000 t was produced using high percentages, typically 80%, of trans, trans MDCHA isomer. The low melting raffinate coproduct left after t,t isomer separation by fractional crystallisation was phosgenated to produce a Hquid aUphatic diisocyanate marketed by Du Pont as Hylene W. Upon terrnination of their QIANA commitment, Du Pont sold the urethane intermediate product rights to Mobay, who now markets the 20% trans, trans—50% cis, trans—30% cis, cis diisocyanate isomer mixture as Desmodur W. In addition to its use in polyamides and as an isocyanate precursor, methylenedi (cyclohexyl amine) is used directiy as an epoxy curative. The Hquid diamine mixture identified historically as PACM-20 is marketed as AMICURE PACM by Anchor Chemical for performance epoxies. [Pg.213]

The amine groups thus formed can also react vigorously with the isocyanate groups to continue the chain extension and cross-linking reactions. Hence, ia the systems there are simultaneous foaming, polymerization, and cross-linking reactions, which produce foam elastomers (or plastics). [Pg.471]

Because of their great versatility there continues to be a steady stream of developments of polymers made by reaction of isocyanates. In addition to the materials discussed in this chapter there are, to name but three, the polyureas, the polyoxazolidinones and polybenzoxazinediones. [Pg.808]

The reaction is completed when the liquid no longer has the odor of phenyl isocyanate shaking is continued until this stage is reached. [Pg.10]

The morphology of a typical urethane adhesive was previously shown in Fig. 3. The continuous phase usually comprises the largest part of the adhesive, and the adhesion characteristics of the urethane are usually controlled by this phase. From a chemical standpoint, this continuous phase is usually comprised of the polyol and the small amount of isocyanate needed to react the polyol chain ends. A wide variety of polyols is commercially available. A few of the polyols most commonly used in urethane adhesives are shown in Table 2. As a first approximation, assuming a properly prepared bonding surface, it is wise to try to match the solubility parameters of the continuous phase with that of the substrate to be bonded. The adhesion properties of the urethane are controlled to a great extent by the continuous phase. Adhesion to medium polarity plastics, such as... [Pg.776]

Parallam, or laminated strand lumber (LSL) is a beam made by a continuous manufacturing process composed of bigger-size wood needles (very elongated wood particles) reassembled with a structural exterior grade adhesive, the favorite adhesive being isocyanates (pMDI) when heat-curing and PRFs when cold-curing. [Pg.1046]

There are numerous applications in solvent recovery processes where evaporation equipment are employed. Figure 14 provides an example of a process scheme for toluene-di-isocyanate recovery. This is an example of continuous vacuum evaporation of distillation residues. [Pg.108]

A stirred solution of 40 g (0.41 m) of phosgene in 150 ml of toluene Is held at 25°C with a cooling bath while a mixtura of 25.2 g (0.105 m) of 3.amino-4-benzyloxyacetophenone and 220 ml of toluena are added slowly. The mixture is heated to reflux and continued for 30 minutes. Nitrogen is passed through the mixture and then concentrated in vacuo to give a crystalline isocyanate, MP 105°-106°C. [Pg.246]

Polyurethanes are manufactured by the mixing of various resins, isocyanates and catalysts to produce an exothermic reaction, which liberates the foaming agent and causes the mix to expand. They are made in large block molds as a batch process or are continuously foamed onto a paper or polythene substrate on a conveyor system. [Pg.123]

Safety No year goes by without some widely used chemical being declared suspect on toxicity grounds. The paint industry has responded rapidly to eliminate toxic chemicals from coatings or to show how they can be used safely in an industrial environment. Examples are the elimination of specific ether-alcohol solvents and the introduction of air-fed hoods for spraying isocyanates. Of particular interest in corrosion prevention is the current pressure to eliminate chromate pigments. Currently there are no equally effective alternatives and the emphasis has had to be on safe usage. The search for replacements continues. [Pg.635]

Van Koten and Frey used a hyperbranched poly(triallylsilane) as the support for palladium- pincer complexes.[63] The supported palladium-pincer complexes were applied in the catalytic aldol condensation of benzaldehyde and methyl isocyanate. Their activity was similar to that of single site Pd catalysts. According to the authors, the complex is suitable for continuous membrane applications, as demonstrated by their purification by means of dialysis. [Pg.101]

Albert H. Coons was the first to attach a fluorescent dye (fluorescein isocyanate) to an antibody and to use this antibody to localize its respective antigen in a tissue section. Fluorescein, one of the most popular fluorochromes ever designed, has enjoyed extensive application in immunofluorescence labeling. For many years, classical fluorescent probes such as FITC or Texas red (TR) have been successfully utilized in fluorescence microscopy. In recent decades, brighter and more stable fluorochromes have continually been developed (see Table 14.1). Marketed by a number of distributors, cyanine dyes, Cy2, Cy3, Cy5, Cy7, feature enhanced water solubility and photostability as well as a higher fluorescence emission intensity as compared to many of the traditional dyes, such as FITC or TR. [Pg.137]

Event 5 Toxic Chemical Leak—Methyl isocyanate (MIC). Union Carbide Corporation, Bhopal, India (December 3, 1984). 3,000-7,000 people killed immediately 20,000 cumulative deaths 200,000-500,000 injured post-traumatic stress continued medical consequences (Lees 1996). [Pg.59]


See other pages where Isocyanate continued is mentioned: [Pg.378]    [Pg.457]    [Pg.459]    [Pg.344]    [Pg.348]    [Pg.332]    [Pg.232]    [Pg.517]    [Pg.775]    [Pg.781]    [Pg.1044]    [Pg.325]    [Pg.32]    [Pg.635]    [Pg.812]    [Pg.206]    [Pg.254]    [Pg.5]    [Pg.444]    [Pg.117]    [Pg.289]    [Pg.180]    [Pg.92]    [Pg.67]    [Pg.244]    [Pg.592]   


SEARCH



Isocyanate (continued components

Paints continued isocyanate

© 2024 chempedia.info