Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutyraldehyde, use

An example of such recychng in a parallel reaction system is in the Oxo process for the production of C4 alcohols. Propylene and synthesis gas (a mixture of carbon monoxide and hydrogen) are first reacted to ra- and isobutyraldehydes using a cobalt-based catalyst. Two parallel reactions occur ... [Pg.38]

Strekowski, R.S. and George, C. Measurement of Henry s law constants for acetone, 2-butanone, 2,3-butanedione, and isobutyraldehyde using a horizontal flow reactor, / Chem. Eng. Data, 50(6) 804-810, 2005. [Pg.1729]

Ethyl acetate [141-78-6] is produced commercially by the Tischenko condensation of acetaldehyde using an aluminum ethoxide catalyst (60). The Tischenko reaction of acetaldehyde with isobutyraldehyde [78-84-2] yields a mixture of ethyl acetate, isobutyl acetate [110-19-0] and isobutyl isobutyrate [97-85-8] (61). [Pg.50]

Aldehydes fiad the most widespread use as chemical iatermediates. The production of acetaldehyde, propionaldehyde, and butyraldehyde as precursors of the corresponding alcohols and acids are examples. The aldehydes of low molecular weight are also condensed in an aldol reaction to form derivatives which are important intermediates for the plasticizer industry (see Plasticizers). As mentioned earlier, 2-ethylhexanol, produced from butyraldehyde, is used in the manufacture of di(2-ethylhexyl) phthalate [117-87-7]. Aldehydes are also used as intermediates for the manufacture of solvents (alcohols and ethers), resins, and dyes. Isobutyraldehyde is used as an intermediate for production of primary solvents and mbber antioxidants (see Antioxidaisits). Fatty aldehydes Cg—used in nearly all perfume types and aromas (see Perfumes). Polymers and copolymers of aldehydes exist and are of commercial significance. [Pg.474]

Polyols. Several important polyhydric alcohols or polyols are made from formaldehyde. The principal ones include pentaerythritol, made from acetaldehyde and formaldehyde trimethylolpropane, made from -butyraldehyde and formaldehyde and neopentyl glycol, made from isobutyraldehyde and formaldehyde. These polyols find use in the alkyd resin (qv) and synthetic lubricants markets. Pentaerythritol [115-77-5] is also used to produce rosin/tall oil esters and explosives (pentaerythritol tetranitrate). Trimethylolpropane [77-99-6] is also used in urethane coatings, polyurethane foams, and multiftmctional monomers. Neopentyl glycol [126-30-7] finds use in plastics produced from unsaturated polyester resins and in coatings based on saturated polyesters. [Pg.497]

Isobutyraldehyde is commonly available as a by-product of propylene/Oxo hydroformylation. Methyl isoamyl ketone is used as a solvent for ceUulose esters, acryHcs, and vinyl polymers. It is available in the United States from Eastman (Kingsport, Tennessee) (47) and Union Carbide (South Charleston, West Virginia) and was priced at 1.42/kg in October 1994. [Pg.493]

The principal industrial appHcation for isobutyl alcohol is as a direct solvent replacement for 1-butanol. It is also used as a process solvent in the flavor and fragrance, pharmaceutical, and pesticide industries. The maximum employment of isobutyl alcohol was in the mid-1980s when it had a distinct price advantage over 1-butanol (10). More recently, however, with increased demand for other value added derivatives of isobutyraldehyde, the price differential between isobutyl and -butyl alcohols has diminished resulting in a switching back by some consumers to 1-butanol. [Pg.358]

Isobutyric acid, the simple oxidation product of isobutyraldehyde, is employed in the esterification of TMPD to form the mono- and diesters of TMPD. Some isobutyric acid is also used in the production of isobutyronittile, an organo-phosphate pesticide precursor. [Pg.380]

Methyl isoamyl ketone (MIAK), a product derived from the aldol condensation of isobutyraldehyde and acetone, is used principally as a solvent for lacquers, ceUulosics, and epoxies. [Pg.380]

Butyric acid is made by air-oxidation of butyraldehyde, which is obtained by appHcation of the oxo synthesis to propylene. Isobutyric acid is made from isobutyraldehyde, a significant product in the synthesis of butyraldehyde (see Butyraldehydes). Butyraldehyde is also used to make 2-ethylhexanoic acid. [Pg.94]

Isobutyraldehyde, allyl alcohol, p-cymene, and p-toluenesulfonic acid monohydrate were purchased from Aldrich Chemical Company, Inc., and used as received. [Pg.128]

This method of preparation is suitable for producing primary alkyl lactates but is unsatisfactory for /3-methallyl lactate because the strong mineral acid catalyzes the rearrangement of methallyl alcohol to isobutyraldehyde. Methyl lactate can be made conveniently (80-85% yield) by heating 1 mole of lactic acid condensation polymer with 2.5-5 moles of methanol and a small quantity of sulfuric acid at 100 for 1-4 hours in a heavy-walled bottle, such as is used for catalytic hydrogenation with a platinum catalyst. [Pg.6]

Isobutyraldehyde [78-84-2] M 72.1, b 62.0 , d 0.789, n 1.377. Dried with CaSOa and used immediately after distn under nitrogen because of the great difficulty in preventing oxidation. Can be purified through its acid bisulfite derivative. [Pg.272]

Recent work (5) using kinetic methods has shown that the enamines derived from isobutyraldehyde are indeed less basic than the corresponding saturated tertiary amines. [Pg.116]

The coupling of enamines with aromatic diazonium salts has been used for the syntheses of monoarylhydrazones of a-diketones (370,488-492) and a-ketoaldehydes (488,493). Cleavage of the initial enamine double bond and formation of the phenylhydrazone of acetone and acetophenone has been reported with the enamines of isobutyraldehyde and 2-phenylpropionalde-hyde. Rearrangement of the initial coupling product to the hydrazone tautomer is not possible in these examples. [Pg.414]

The oxa-Pictet-Spengler reaction has been used with success to prepare dihydrofurano[2,3-c]pyrans and isochromans from l-(3-furyl)alkan-2-ols and 2-(3 ,4 -dihydroxy)phenylethanol, respectively. Furanyl alcohol 32 reacted with isobutyraldehyde 33 in the presence of p-toluenesulfonic acid to give the corresponding CI5-5,7-diisopropyl 4,5-dihydro-7H-furano[2,3-c]pyran 34 in good yield. ... [Pg.473]

Incorporation of extensive branching in the side chain similarly does not decrease pharmacologic activity. Reductive alkylation of aminoalcohol, 42, with isobutyraldehyde affords the amine, 43. Acylation of the amine with benzoyl chloride probably goes initially to the amide (44). The acid catalysis used in the reaction leads to an N to 0 acyl migration to afford iso-bucaine (45). ... [Pg.12]

Reaction of the enantiomerically pure alkoxyamines 3, prepared from L-ephedrine or norephedrine derivatives 1 with acetaldehyde, isobutyraldehyde or benzaldehyde using ethanol as the solvent, afford the corresponding oxime ethers 4 as mixtures of E/Z-stereoisomers11. [Pg.728]

The first stage of the process is a hydroformylation (oxo) reaction from which the main product is n-butyraldehyde. The feeds to this reactor are synthesis gas (CO/H2 mixture) and propylene in the molar ratio 2 1, and the recycled products of isobutyraldehyde cracking. The reactor operates at 130°C and 350 bar, using cobalt carbonyl as catalyst in solution. The main reaction products are n- and isobutyraldehyde in the ratio of 4 1, the former being the required product for subsequent conversion to 2-ethylhexanol. In addition, 3 per cent of the propylene feed is converted to propane whilst some does not react. [Pg.965]

Sulfur ylides are a classic reagent for the conversion of carbonyl compounds to epoxides. Chiral camphor-derived sulfur ylides have been used in the enantioselective synthesis of epoxy-amides <06JA2105>. Reaction of sulfonium salt 12 with an aldehyde and base provides the epoxide 13 in generally excellent yields. While the yield of the reaction was quite good across a variety of R groups, the enantioselectivity was variable. For example benzaldehyde provides 13 (R = Ph) in 97% ee while isobutyraldehyde provides 13 (R = i-Pr) with only 10% ee. These epoxy amides could be converted to a number of epoxide-opened... [Pg.73]

The principal product of the hydroformylation which is most desired in industrial applications is a linear aldehyde. The unmodified, cobalt-catalyzed processes produce a mixture of linear and branched aldehydes, the latter being mostly an a-methyl isomer. For the largest single application—propylene to butyraldehydes—the product composition has an isomer ratio (ratio of percent linear to percent branched) of (2.5 t.0)/l. The isobutyraldehyde cannot be used to make 2-ethylhexanol, and iso-... [Pg.10]

The kinetics of the ionic hydrogenation of isobutyraldehyde were studied using [CpMo(CO)3H] as the hydride and CF3C02H as the acid [41]. The apparent rate decreases as the reaction proceeds, since the acid is consumed. However, when the acidity is held constant by a buffered solution in the presence of excess metal hydride, the reaction is first-order in acid. The reaction is also first-order in metal hydride concentration. A mechanism consistent with these kinetics results is shown in Scheme 7.8. Pre-equilibrium protonation of the aldehyde is followed by rate-determining hydride transfer. [Pg.171]

The supported Co2+-substituted Wells-Dawson POM, Cs6H2[P2W17061Co(OH2)], on silica was stable up to 773 K and catalyzed the heterogeneous oxidation of various aldehydes to the corresponding carboxylic acids with 02 as a sole oxidant [116], The H5PV2Mo10O40 POM, impregnated onto meso-porous MCM-41, catalyzed the aerobic oxidation of alkanes and alkenes using isobutyraldehyde as a... [Pg.477]

Isobutyraldehyde purchased from Wako Pure Chemical Industries, Ltd., Osaka, Japan (also available from Aldrich Chemical Company, Inc.) was purified by distillation immediately before use. [Pg.240]


See other pages where Isobutyraldehyde, use is mentioned: [Pg.339]    [Pg.121]    [Pg.201]    [Pg.143]    [Pg.339]    [Pg.121]    [Pg.201]    [Pg.143]    [Pg.537]    [Pg.70]    [Pg.382]    [Pg.133]    [Pg.63]    [Pg.186]    [Pg.66]    [Pg.256]    [Pg.63]    [Pg.61]    [Pg.161]    [Pg.494]    [Pg.34]    [Pg.36]    [Pg.563]    [Pg.221]    [Pg.56]    [Pg.57]    [Pg.67]    [Pg.196]    [Pg.122]    [Pg.201]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Isobutyraldehyde

© 2024 chempedia.info