Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complexes, electron-transfer reactions clusters

A condition where metal ions within a coordination complex or cluster are present in more than one oxidation state. In such systems, there is often complete delocalization of the valence electrons over the entire complex or cluster, and this is thought to facilitate electron-transfer reactions. Mixed valency has been observed in iron-sulfur proteins. Other terms for this behavior include mixed oxidation state and nonintegral oxidation state. [Pg.481]

Ferredoxins and Rieske proteins employ a (Fe )2/Fe Fe redox couple for biological electron transfer reactions. Within the protein, the two iron atoms are rendered inequivalent, even in the hilly oxidized (Fe )2 state, by the surrounding protein environment Within a synthetic cluster, however, both iron atoms are typically equivalent, as may be expected from the symmetry of the overall complex. Table 4 shows reduction potentials for selected analog clusters. [Pg.2290]

The nse of polysnlfide complexes in catalysis has been discnssed. Two major classes of reactions are apparent (1) hydrogen activation and (2) electron transfers. For example, [CpMo(S)(SH)]2 catalyzes the conversion of nitrobenzene to aniline at room temperature, while (CpMo(S))2S2CH2 catalyzes a number of reactions snch as the conversion of bromoethylbenzene to ethylbenzene and the rednction of acetyl chloride, as well as the rednction of alkynes to the corresponding cw-alkenes. Electron transfer reactions see Electron Transfer in Coordination Compounds) have been studied because of their relevance to biological processes (in, for example, ferrodoxins), and these cluster compounds are dealt with in Iron-Sulfur Proteins. Other studies include the use of metal polysulfide complexes as catalysts for the photolytic reduction of water by THF and copper compounds for the hydration of acetylene to acetaldehyde. ... [Pg.4629]

Aconitase is an iron-sulfur protein, or nonheme iron protein. It contains four iron atoms that are not incorporated as part of a heme group. The four iron atoms are complexed to four inorganic sulfides and three cysteine sulfur atoms, leaving one iron atom available to bind citrate and then isocitrate through their carboxylate and hydroxyl groups (Figure 17,12). This iron center, in conjunction with other groups on the enzyme, facilitates the dehydration and rehydration reactions. We will consider the role of these iron-sulfur clusters in the electron-transfer reactions of oxidative phosphorylation subsequently (Section 18.3.1). [Pg.706]

Studies (see, e.g., (101)) indicate that photosynthesis originated after the development of respiratory electron transfer pathways (99, 143). The photosynthetic reaction center, in this scenario, would have been created in order to enhance the efficiency of the already existing electron transport chains, that is, by adding a light-driven cycle around the cytochrome be complex. The Rieske protein as the key subunit in cytochrome be complexes would in this picture have contributed the first iron-sulfur center involved in photosynthetic mechanisms (since on the basis of the present data, it seems likely to us that the first photosynthetic RC resembled RCII, i.e., was devoid of iron—sulfur clusters). [Pg.355]

Cytochromes, catalases, and peroxidases all contain iron-heme centers. Nitrite and sulfite reductases, involved in N-O and S-O reductive cleavage reactions to NH3 and HS-, contain iron-heme centers coupled to [Fe ] iron-sulfur clusters. Photosynthetic reaction center complexes contain porphyrins that are implicated in the photoinitiated electron transfers carried out by the complexes. [Pg.372]

A similar reaction can be written for the [Fe] hydrogenases with a Fe-[4Fe-4S] complex replacing the nickel. Note that the nickel atom in the NiFe cluster, and the Fe-[4Fe-4S] sites are nearest to the electron carrier [4Fe-4S] clusters, indicating that electron transfer occurs through these atoms. The other atom in each of the centres is an iron atom with -CN and -CO ligands, and it seems likely that this is a binding site for hydride (Fig. 8.1). [Pg.185]

In recent years. X-ray crystallography has led to the discovery of several novel metalloclusters of complex architecture that contain at least four metal ions (4, 5). They represent the active site of several redox enzymes that contain molybdenum, nickel, and manganese, as well as the most commonly encountered iron and copper (Fig. 6). These enzymes are extremely specialized in the oxidation or reduction reactions of the smallest molecules and anions (which include N2, CO, and H2). A common feature of such clusters is that they are present in enzymes as part of a more extensive electron transfer chain that involves a series of... [Pg.754]

As is apparent in Fig. 3, considerable similarity exists in the arrangement of the electron transfer cofactors in PS I and PS n. The main differences between the two systems are as follows 1) PS I has three Pe4S4 iron-sulfur clusters. Ex, Ea, and Eb, located on the stromal side of the complex 2) In PS I the primary acceptor is a chlorophyll, not pheophytin and 3) the distance between the primary acceptor (Aqa3 ) and phylloquinone (Aia,b) in PS I is significantly shorter than the corresponding distance between PheoA,B and Qa.b in PS II and Type II reaction centers. These structural differences correlate with functional differences between the two types of reaction centers. In PS II, the mobile electron carrier on the stromal side of the complex is Qb, which is a lipid-soluble, two-electron acceptor. In contrast, the mobile electron carrier in PS I is ferredoxin, which is a water-soluble, one-electron acceptor. The three iron-sulfur clusters in PS I provide a chaimel by which electrons are funneled out of the reaction center to ferredoxin. On the donor side of the complex, plastocyanin, the reductant that replenishes electrons removed from P700, is also a water-soluble protein and is a one-electron donor. Thus, each photon absorbed by the PS I complex leads to the transfer of one electron from plastocyanin to ferredoxin. In Fig. 2, it is apparent that the midpoint potentials of the acceptors in PS I are about 500 to 700 mV more negative than those in PS II, and the... [Pg.1490]

Figure 18.10 Coupled electron-proton transfer reactions through NADH-Q oxidoreductase. Electrons flow in Complex I from NADH through FMN and a series of iron-sulfur cluster to ubiquinone (Q). The electron flow results in the pumping of four protons and the uptake of two protons from the mitochondria matrix. [Based on U, Brandt et al, FEB5 Letters 54S(2003) 9-17, Figure 2.]... Figure 18.10 Coupled electron-proton transfer reactions through NADH-Q oxidoreductase. Electrons flow in Complex I from NADH through FMN and a series of iron-sulfur cluster to ubiquinone (Q). The electron flow results in the pumping of four protons and the uptake of two protons from the mitochondria matrix. [Based on U, Brandt et al, FEB5 Letters 54S(2003) 9-17, Figure 2.]...
The mechanism suggested by Kerscher and Oesterhelt is indicated in Scheme 46 for the enzyme from H. halobium (213). The initial step is identical to that of the 2-oxoacid dehydrogenase complexes and involves binding of pyruvate to thiamin diphosphate and subsequent decarboxylation yielding hydroxyethylthia-min diphosphate. This intermediate undergoes one-electron transfer to the [4Fe-4S] cluster to form the stable free radical. The cluster is then reoxidized by ferredoxin or oxygen to give the enzyme-intermediate complex. Reaction with CoA initiates the second electron transfer to the iron-sulfur cluster, acyl transfer, followed by reoxidation of the enzyme by ferredoxin or O2 to complete the cycle. Two basic questions are yet unanswered (1) What is the mechanism of the enzymic reaction between CoASH and hydroxyethyl-TPP in the absence... [Pg.382]

Iron is counted as the only major bioelement of the transition elements, or as the most important trace element. This importance is based on a unique feature of iron depending on the species and distance of the ligands of this metal in complex compounds, high- or low-spin complexes with a broad variety of redox potentials can be formed, namely iron- sulfur clusters and heme compounds. Therefore, iron forms the most electron-transferring prosthetic groups in the cell, enabling respiration and other important redox reactions. [Pg.266]


See other pages where Iron complexes, electron-transfer reactions clusters is mentioned: [Pg.5512]    [Pg.341]    [Pg.45]    [Pg.5511]    [Pg.24]    [Pg.151]    [Pg.69]    [Pg.59]    [Pg.250]    [Pg.190]    [Pg.31]    [Pg.32]    [Pg.378]    [Pg.621]    [Pg.69]    [Pg.175]    [Pg.121]    [Pg.381]    [Pg.573]    [Pg.34]    [Pg.90]    [Pg.3870]    [Pg.1053]    [Pg.76]    [Pg.145]    [Pg.80]    [Pg.381]    [Pg.593]    [Pg.3869]    [Pg.29]    [Pg.674]    [Pg.508]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 , Pg.114 , Pg.115 ]




SEARCH



Cluster complexes

Clustering reaction

Electron clusters

Electron transfer complexation

Electron-transfer complexes

Iron clusters

Iron complex, electron-transfer

Iron complexes clusters

Iron complexes, electron-transfer reactions

Iron electron transfer

Iron reaction

Iron-57, electronic

© 2024 chempedia.info