Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron also redox potentials

Iron speciation is a major factor in Fenton chemistry. As previously discussed, iron solubility, redox potentials, and concentrations of Fe2+ and Fe3+ are all dependent on the ligands that coordinate iron. In order to produce hydroxyl radical, there must be a readily accessible coordination site for H202 to bind to [9,10]. Very strong iron chelators, therefore, inhibit the formation of hydroxyl radical. Iron ligands can also act as hydroxyl radical scavengers. Because the radical is always formed in close proximity to these ligands, they are more likely to react with hydroxyl radical than pollutants that are not in close proximity to the iron. [Pg.190]

Variamine blue (C.I. 37255). The end point in an EDTA titration may sometimes be detected by changes in redox potential, and hence by the use of appropriate redox indicators. An excellent example is variamine blue (4-methoxy-4 -aminodiphenylamine), which may be employed in the complexometric titration of iron(III). When a mixture of iron(II) and (III) is titrated with EDTA the latter disappears first. As soon as an amount of the complexing agent equivalent to the concentration of iron(III) has been added, pFe(III) increases abruptly and consequently there is a sudden decrease in the redox potential (compare Section 2.33) the end point can therefore be detected either potentiometrically or with a redox indicator (10.91). The stability constant of the iron(III) complex FeY- (EDTA = Na2H2Y) is about 1025 and that of the iron(II) complex FeY2 - is 1014 approximate calculations show that the change of redox potential is about 600 millivolts at pH = 2 and that this will be almost independent of the concentration of iron(II) present. The jump in redox potential will also be obtained if no iron(II) salt is actually added, since the extremely minute amount of iron(II) necessary is always present in any pure iron(III) salt. [Pg.320]

Species may differ by oxidation state for example, manganese(II) and (IV) iron(II) and (III) and chromium(III) and (VI). Oxidation state is influenced by the redox potential. Mobility is affected because oxidation state influences precipitation-dissolution reactions and also toxicity in the case of heavy metals. [Pg.790]

Iron or copper complexes will catalyse Fenton chemistry only if two conditions are met simultaneously, namely that the ferric complex can be reduced and that the ferrous complex has an oxidation potential such that it can transfer an electron to H2O2. However, we must also add that this reasoning supposes that we are under standard conditions and at equilibrium, which is rarely the case for biological systems. A simple example will illustrate the problem whereas under standard conditions reaction (2) has a redox potential of —330 mV (at an O2 concentration of 1 atmosphere), in vivo with [O2] = 3.5 x 10 5 M and [O2 ] = 10 11 M the redox potential is +230 mV (Pierre and Fontecave, 1999). [Pg.48]

As mentioned previously, siderophores must selectively bind iron tightly in order to solubilize the metal ion and prevent hydrolysis, as well as effectively compete with other chelators in the system. The following discussion will address in more detail the effect of siderophore structure on the thermodynamics of iron binding, as well as different methods for measuring and comparing iron-siderophore complex stability. The redox potentials of the ferri-siderophore complexes will also be addressed, as ferri-siderophore reduction may be important in the iron uptake process in biological systems. [Pg.186]

Using linear regression, it is possible to estimate the protonation constants of the Fe(II) complexes of siderophore complexes where the redox potentials have been measured over a range of pH values (59). This also explains the variation in reversibility of reduction as the pH changes, as the stability of the ferro-siderophore complex is much lower than the ferric complex, and the increased lability of ligand exchange and increased binding site competition from H+ may result in dissociation of the complex before the iron center can be reoxidized. [Pg.217]

The implications of these mechanistic studies for our understanding of environmental iron sequestration by siderophores is as follows. The hydroxyl containing aqua ferric ions will tend to form ferri-siderophore complexes more rapidly than the hexaaqua ion and ferrous ion will be sequestered more rapidly than the ferric ion. However, once in a siderophore binding site the ferrous ion will be air oxidized to the ferric ion, due to the negative redox potentials (see Section III.D). This also means that Fe dissolution from rocks will be influenced by mineral composition (other donors in the first coordination shell) as well as surface reductases in contact with the rock, and of course surface area (4,13). [Pg.222]

Table 13. Further series (a—h) of iron or ruthenium porphyrins showing cis effects exerted by the axial ligands X or L on the wavelength of the a-band (or (3-band in Series d, e and g) and the chemical shift (6) of the porphyrin meso-protons (Series c, h o-proton in c). The metal II/III-redox potentials (Ej/2) are also given. For abbreviations, see Table 2... [Pg.119]

Table XVI shows a selection of stability constants and redox potentials for iron(II) and iron(III) complexes. This Table covers a wide range of the latter, showing how the relative stabilities of the iron(II) and iron(III) complexes are refiected in. B (Fe /Fe ) values. A more detailed illustration is provided by the complexes of a series of linear hexadentate hydroxypyridinonate and catecholate ligands, where again high stabilities for the respective iron(III) complexes are refiected in markedly negative redox potentials (213). The combination of the high stabilities of iron(III) complexes of hydrox5rpyridinones, as of hydroxamates, catecholates, and siderophores, and the low stabilities of their iron(II) analogues is also apparent in Fig. 8. Here redox potentials for hydroxypyranonate and hydroxypyridinonate complexes of iron are placed in the overall context of redox potentials for iron(III)/iron(II) couples. The -(Fe /Fe ) range for e.g., water, cyanide, edta, 2,2 -bipyridyl, and (substituted) 1,10-phenanthrolines is... Table XVI shows a selection of stability constants and redox potentials for iron(II) and iron(III) complexes. This Table covers a wide range of the latter, showing how the relative stabilities of the iron(II) and iron(III) complexes are refiected in. B (Fe /Fe ) values. A more detailed illustration is provided by the complexes of a series of linear hexadentate hydroxypyridinonate and catecholate ligands, where again high stabilities for the respective iron(III) complexes are refiected in markedly negative redox potentials (213). The combination of the high stabilities of iron(III) complexes of hydrox5rpyridinones, as of hydroxamates, catecholates, and siderophores, and the low stabilities of their iron(II) analogues is also apparent in Fig. 8. Here redox potentials for hydroxypyranonate and hydroxypyridinonate complexes of iron are placed in the overall context of redox potentials for iron(III)/iron(II) couples. The -(Fe /Fe ) range for e.g., water, cyanide, edta, 2,2 -bipyridyl, and (substituted) 1,10-phenanthrolines is...
Stability constants log Ki and log K2 have been determined for iron(II) complexation by 4-X-2,6-bis-(benzimidazol-2 -yl)pyridine, X = H, OH, or Cl, in several methanol-containing solvent mixtures.Redox potentials have been reported for the [Fe(4,4 -distyrylbipy)3] + + couple and its p-methylstyryl analogue (also for Ru, Os analogues). ... [Pg.445]

In this chapter we will pay most attention to the isolation function of the innermost of the barriers, the waste matrix, and its potential interactions with the contacting water. In addition, and because of the similarities in the processes involved, we will also discuss the key processes that control the mobility of some of the critical components of waste in ground-waters. These key processes are bentonite/ groundwater interactions, which can exert a large influence on the processes controlling the master pH/pe variables, iron corrosion processes responsible for poising the redox potential of the system and the interactions between the waste matrix itself and the contacting fluids, which produce radiolysis reaction processes. [Pg.516]


See other pages where Iron also redox potentials is mentioned: [Pg.102]    [Pg.177]    [Pg.460]    [Pg.445]    [Pg.165]    [Pg.59]    [Pg.125]    [Pg.195]    [Pg.481]    [Pg.186]    [Pg.209]    [Pg.251]    [Pg.261]    [Pg.262]    [Pg.264]    [Pg.340]    [Pg.113]    [Pg.211]    [Pg.213]    [Pg.214]    [Pg.216]    [Pg.220]    [Pg.36]    [Pg.108]    [Pg.164]    [Pg.68]    [Pg.203]    [Pg.102]    [Pg.214]    [Pg.256]    [Pg.256]    [Pg.270]    [Pg.315]    [Pg.2]    [Pg.458]    [Pg.420]    [Pg.215]    [Pg.138]    [Pg.598]    [Pg.96]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Iron redox potentials

Redox potentials

© 2024 chempedia.info