Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia ionization potential

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

Lewis Bases. A variety of other ligands have been studied, but with only a few of the transition metals. There is still a lot of room for scoping work in this direction. Other reactant systems reported are ammoni a(2e), methanol (3h), and hydrogen sulfide(3b) with iron, and benzene with tungsten (Tf) and plati num(3a). In a qualitative sense all of these reactions appear to occur at, or near gas kinetic rates without distinct size selectivity. The ammonia chemisorbs on each collision with no size selective behavior. These complexes have lower ionization potential indicative of the donor type ligands. Saturation studies have indicated a variety of absorption sites on a single size cluster(51). [Pg.60]

It was also observed, in 1973, that the fast reduction of Cu ions by solvated electrons in liquid ammonia did not yield the metal and that, instead, molecular hydrogen was evolved [11]. These results were explained by assigning to the quasi-atomic state of the nascent metal, specific thermodynamical properties distinct from those of the bulk metal, which is stable under the same conditions. This concept implied that, as soon as formed, atoms and small clusters of a metal, even a noble metal, may exhibit much stronger reducing properties than the bulk metal, and may be spontaneously corroded by the solvent with simultaneous hydrogen evolution. It also implied that for a given metal the thermodynamics depended on the particle nuclearity (number of atoms reduced per particle), and it therefore provided a rationalized interpretation of other previous data [7,9,10]. Furthermore, experiments on the photoionization of silver atoms in solution demonstrated that their ionization potential was much lower than that of the bulk metal [12]. Moreover, it was shown that the redox potential of isolated silver atoms in water must... [Pg.579]

The question of equivalence of bonds or lone pairs is relevant here. Methane has two valence shell ionization potentials. Clearly, having four equivalent bonds does not imply four equal-energy bond orbitals, that is, a single ionization potential. In the same vein, ammonia has three, water has four, and HF has three valence shell ionization potentials. [Pg.26]

C. A. Maekay gave 11-1 volts for the ionizing potential of the gas R. A. Morton and R. W. Riding, 11-7 volts and A. T. Waldie, 11 volts. H. Henstock discussed the electronic structure and L. B. Loeb, L. B. Loeb and M. F. Ashley, and H. R. Hasse, the mobilities of ions in gaseous mixtures of air and ammonia. H. M. Goodwin and M. de K. Thompson10 found the dielectric constant of commercial liquid ammonia at —34° to be 21 ammonia prepared from ammonium chloride and lime, 23 and commercial liquid ammonia after dehydration, 22. C. T. Zahn found the dielectric constant, e, to be ... [Pg.189]

The PID allows for the detection of aromatics, ketones, aidehydes, esters, amines, organosulfur compounds, and inorganics such as ammonia, hydrogen sulfide, HI, HC1, chlorine, iodine, and phosphine. The detector will respond to all compounds with ionization potentials within the range of the UV light source, or any compound with ionization potentials of less than 12 eV will respond. [Pg.309]

Until this point, results appear to be rather divergent, possibly because these studies were performed on SMA dissolved in various solvents and solvation might modify the distribution of electrons in the Si-C-N unit. In order to circumvent this problem, gas phase studies and theoretical approaches were developed. In the gas phase (ion cyclotron resonance mass spectroscopy), trimethylsilylmethyldimethylamine was reported to be more basic than the analogous neopentyldimethylamine from proton affinity measurements based upon proton affinity of ammonia (201.0 kcal/mol) 227.1 and 225.8 kcal/mol respectively.32 Conversely, the ionization potential of MSMA indicates a basicity lower than that of its carbon analog and the authors emphasize the fact that this result is opposite... [Pg.180]

The Ar(3P(, Pt) levels are 11.623 and 11.827 eV, respectively, above the ground (1S) level. The lifetimes are 8.4 and 2.0 nsec (33), respectively. The Ar(3P,1 Pj) states are formed by absorption of the Ar resonance lines at 1067 and 1048 A. In the 1 to 100 mtorr concentration range the lifetime of Ar(3P, P() atoms is of the order of 10 /tsec [Hurst et al. (494)], which is 1000 times as long as that of isolated atoms because of imprisonment of resonance radiation. If the ionization potential ofa molecule is below 11.6 eV, it is possible to increase the photoionization yield (sensitize) by adding Ar to the sample. The increase of the ionization yield is caused by collisional energy transfer between Ar(3P, Pi) atoms and the molecule before the excited atoms return to the ground state by resonance emission. Yoshida and Tanaka (1065) have found such an increase in the Ar propane, and Ar-ammonia mixtures when they are excited by an Ar resonance lamp. Boxall et al. (123) have measured quenching rate constants for Ar(3P,) atoms by N2) 02, NO, CO, and H2. They are on the order of the gas kinetic collision rate. [Pg.13]

In the second mechanism, the electron transfer from the nucleophile cluster into the aromatic ring should be facilitated by the decrease of the ionization potential (IP) of the solvent clusters as n increases. This mechanism is convincing for the ammonia or methanol clusters which show relatively low IPs when cluster size is increasing however, for water clusters, the IPs of n > 3 clusters are not known. The IPs of water and its dimer are 12.6 and 11.2 eV, respectively (Ng et al. 1977). However, these IPs are certainly higher than the one of PDFB (9.2 eV), which is not in favor of a sequential electron transfer followed by a proton transfer mechanism. This mechanism is more likely possible if one assumes, in agreement with Brutschy and coworkers, that the barrier to the reaction is lowered by a concerted electron transfer/proton transfer mechanism (Brutschy 1989, 1990 Brutschy et al. 1988, 1991, 1992, in press). [Pg.143]

Since the suggestion of the sequential QM/MM hybrid method, Canuto, Coutinho and co-authors have applied this method with success in the study of several systems and properties shift of the electronic absorption spectrum of benzene [42], pyrimidine [51] and (3-carotene [47] in several solvents shift of the ortho-betaine in water [52] shift of the electronic absorption and emission spectrum of formaldehyde in water [53] and acetone in water [54] hydrogen interaction energy of pyridine [46] and guanine-cytosine in water [55] differential solvation of phenol and phenoxy radical in different solvents [56,57] hydrated electron [58] dipole polarizability of F in water [59] tautomeric equilibrium of 2-mercaptopyridine in water [60] NMR chemical shifts in liquid water [61] electron affinity and ionization potential of liquid water [62] and liquid ammonia [35] dipole polarizability of atomic liquids [63] etc. [Pg.170]

In 1947 Walsh (68) proposed that because the ionization potential of the rr electrons in ethylene and of the lone pair in ammonia are both around 10.5 eV, the it electrons in the olefins should be equally capable of donation to acceptor centers. This implied that olefin complexes should be much more widespread than they were. [Pg.8]

It might be expected that the more reactive metals would be those with the lower ionization potential, but in practice lithium is the most reactive and potassium the least in the reduction of benzene. This behaviour may be a consequence of the greater solubility of lithium in ammonia. [Pg.130]

The ionization potentials (IPs) of ammonia clusters containing alkali metal atoms, such as Li [10], Na [8] and Cs [9], have been reported by Hertel s and Fuke s groups. These clusters have been prepared by pickup sources coupled with a heated oven (Na and Cs) or a laser-vaporization source (Li). The IP(n) values decrease almost linearly with (n-f 1) , which is approximately proportional to the inverse of the cluster radius. Although the IPs of free atoms are different (5.392, 5.139 and 3.894 eV for Li, Na and Cs, respectively), those of the clusters (n > 5) are almost the same irrespective to the metal atoms. The intercept at (n + 1) 0... [Pg.3148]


See other pages where Ammonia ionization potential is mentioned: [Pg.308]    [Pg.373]    [Pg.191]    [Pg.236]    [Pg.68]    [Pg.361]    [Pg.87]    [Pg.160]    [Pg.471]    [Pg.149]    [Pg.151]    [Pg.189]    [Pg.193]    [Pg.193]    [Pg.90]    [Pg.183]    [Pg.174]    [Pg.203]    [Pg.159]    [Pg.207]    [Pg.200]    [Pg.18]    [Pg.156]    [Pg.114]    [Pg.193]    [Pg.3051]    [Pg.3052]    [Pg.3152]    [Pg.308]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Ionization potential

© 2024 chempedia.info