Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic strength chemical equilibrium

The Effect of Ionic Strength on an Equilibrium Constant (A Class Study). In J. A. Bell, ed. Chemical Principles in Practice. Addison-Wesley Reading, MA, 1967. [Pg.176]

Because of uncertainties of equilibrium constants, ES, pH, temperature, /02 and other parameters (activity coefficient, ionic strength, activity of water, pressure), the estimated values of concentrations may have uncertainties of 1 in logarithmic unit. However, it can be concluded from the thermochemical calculations and fluid inclusion data that the Kuroko ore fluids have the following chemical features. [Pg.50]

The concept of SPME was first introduced by Belardi and Pawliszyn in 1989. A fiber (usually fused silica) which has been coated on the outside with a suitable polymer sorbent (e.g., polydimethylsiloxane) is dipped into the headspace above the sample or directly into the liquid sample. The pesticides are partitioned from the sample into the sorbent and an equilibrium between the gas or liquid and the sorbent is established. The analytes are thermally desorbed in a GC injector or liquid desorbed in a liquid chromatography (LC) injector. The autosampler has to be specially modified for SPME but otherwise the technique is simple to use, rapid, inexpensive and solvent free. Optimization of the procedure will involve the correct choice of phase, extraction time, ionic strength of the extraction step, temperature and the time and temperature of the desorption step. According to the chemical characteristics of the pesticides determined, the extraction efficiency is often influenced by the sample matrix and pH. [Pg.731]

Since AG° can be calculated from the values of the chemical potentials of A, B, C, D, in the standard reference state (given in tables), the stoichiometric equilibrium constant Kc can be calculated. (More accurately we ought to use activities instead of concentrations to take into account the ionic strength of the solution this can be done introducing the corresponding correction factors, but in dilute solutions this correction is normally not necessary - the activities are practically equal to the concentrations and Kc is then a true thermodynamic constant). [Pg.122]

Under these conditions, the formation rate constant, k, can be estimated from the product of the outer sphere stability constant, Kos, and the water loss rate constant, h2o, (equation (28) Table 2). The outer sphere stability constant can be estimated from the free energy of electrostatic interaction between M(H20)q+ and L and the ionic strength of the medium [5,164,172,173]. Consequently, Kos does not depend on the chemical nature of the ligand. A similar mechanism will also apply to a coordination complex with polydentate ligands, if the rate-limiting step is the formation of the first metal-ligand bond [5]. Values for the dissociation rate constants, k, are usually estimated from the thermodynamic equilibrium constant, using calculated values of kf ... [Pg.470]

Seawater has high concentrations of solutes and, hence, does not exhibit ideal solution behavior. Most of this nonideal behavior is a consequence of the major and minor ions in seawater exerting forces on each other, on water, and on the reactants and products in the chemical reaction of interest. Since most of the nonideal behavior is caused by electrostatic interactions, it is largely a function of the total charge concentration, or ionic strength of the solution. Thus, the effect of nonideal behavior can be accoimted for in the equilibrium model by adding terms that reflect the ionic strength of seawater as described later. [Pg.112]

A chemical equilibrium modeling system that can be used to perform calculations on low temperature (0-50°C), low to moderate ionic strength (<0.5 M) aqueous systems. [Pg.125]

Rahaman and Hatton [152] developed a thermodynamic model for the prediction of the sizes of the protein filled and unfilled RMs as a function of system parameters such as ionic strength, protein charge, and size, Wq and protein concentration for both phase transfer and injection techniques. The important assumptions considered include (i) reverse micellar population is bidisperse, (ii) charge distribution is uniform, (iii) electrostatic interactions within a micelle and between a protein and micellar interface are represented by nonlinear Poisson-Boltzmann equation, (iv) the equilibrium micellar radii are assumed to be those that minimize the system free energy, and (v) water transferred between the two phases is too small to change chemical potential. [Pg.151]

Figure 8-1 Student data showing that the equilibrium quotient of concentrations for the reaction Fe3 + SCN Fe(SCN)21 decreases as potassium nitrate is added to the solution. Color Plate 3 shows the fading of the red color of Fe(SCN)2 after KN03 has been added. Problem 13-11 gives more information on this chemical system. [From R. J. Stolzberg, "Discovering a Change in Equilibrium Constant with Change in Ionic Strength," J. Chem. Ed. 1999, 76.640.]... Figure 8-1 Student data showing that the equilibrium quotient of concentrations for the reaction Fe3 + SCN Fe(SCN)21 decreases as potassium nitrate is added to the solution. Color Plate 3 shows the fading of the red color of Fe(SCN)2 after KN03 has been added. Problem 13-11 gives more information on this chemical system. [From R. J. Stolzberg, "Discovering a Change in Equilibrium Constant with Change in Ionic Strength," J. Chem. Ed. 1999, 76.640.]...
The equilibrium constant expression in Equation 8-1 does not predict any effect of ionic strength on a chemical reaction. To account for the effect of ionic strength, concentrations are replaced by activities ... [Pg.143]

To use activity coefficients, first solve the equilibrium problem with all activity coefficients equal to unity. From the resulting concentrations, compute the ionic strength and use the Davies equation to find activity coefficients. With activity coefficients, calculate the effective equilibrium constant K for each chemical reaction. K is the equilibrium quotient of concentrations at a particular ionic strength. Solve the problem again with K values and find a new ionic strength. Repeat the cycle until the concentrations reach constant values. [Pg.266]

A more comprehensive analysis of the influences on the ozone solubility was made by Sotelo et al., (1989). The Henry s Law constant H was measured in the presence of several salts, i. e. buffer solutions frequently used in ozonation experiments. Based on an ozone mass balance in a stirred tank reactor and employing the two film theory of gas absorption followed by an irreversible chemical reaction (Charpentier, 1981), equations for the Henry s Law constant as a function of temperature, pH and ionic strength, which agreed with the experimental values within 15 % were developed (Table 3-2). In this study, much care was taken to correctly analyse the ozone decomposition due to changes in the pH as well as to achieve the steady state experimental concentration at every temperature in the range considered (0°C [Pg.86]

Sorption coefficients quantitatively describe the extent to which an organic chemical is distributed at equilibrium between an environmental solid (i.e., soil, sediment, suspended sediment, wastewater solids) and the aqueous phase it is in contact with. Sorption coefficients depend on (1) the variety of interactions occurring between the solute and the solid and aqueous phases and (2) the effects of environmental and/or experimental variables such as organic matter quantity and type, clay mineral content and type, clay to organic matter ratio, particle size distribution and surface area of the sorbent, pH, ionic strength, suspended particulates or colloidal material, temperature, dissolved organic matter (DOM) concentration, solute and solid concentrations, and phase separation technique. [Pg.162]

The input of the problem requires total analytically measured concentrations of the selected components. Total concentrations of elements (components) from chemical analysis such as ICP and atomic absorption are preferable to methods that only measure some fraction of the total such as selective colorimetric or electrochemical methods. The user defines how the activity coefficients are to be computed (Davis equation or the extended Debye-Huckel), the temperature of the system and whether pH, Eh and ionic strength are to be imposed or calculated. Once the total concentrations of the selected components are defined, all possible soluble complexes are automatically selected from the database. At this stage the thermodynamic equilibrium constants supplied with the model may be edited or certain species excluded from the calculation (e.g. species that have slow reaction kinetics). In addition, it is possible for the user to supply constants for specific reactions not included in the database, but care must be taken to make sure the formation equation for the newly defined species is written in such a way as to be compatible with the chemical components used by the rest of the program, e.g. if the species A1H2PC>4+ were to be added using the following reaction ... [Pg.123]

Since the chemical equilibrium constants in this equation are known at zero ionic strength at 298.15 K and are given in Table 1.2, K can be calculated at any pH... [Pg.13]

In this chapter we will find that when isomers are in chemical equilibrium, it is convenient to treat isomer groups like species in order to reduce the number of terms in the fundamental equation. We will also discuss the effect of ionic strength and temperature on equilibrium constants and thermodynamic properties of species. More introductory material on the thermodynamics of chemical reactions is provided in Silbey and Alberty (2001). [Pg.36]

The effect of ionic strength on the equilibrium constant for a chemical reaction at 25 C is obtained by substituting equation 3.6-4 in equation 3.1-2 ... [Pg.47]


See other pages where Ionic strength chemical equilibrium is mentioned: [Pg.155]    [Pg.1890]    [Pg.24]    [Pg.413]    [Pg.86]    [Pg.637]    [Pg.19]    [Pg.417]    [Pg.522]    [Pg.233]    [Pg.12]    [Pg.56]    [Pg.545]    [Pg.515]    [Pg.152]    [Pg.555]    [Pg.540]    [Pg.150]    [Pg.168]    [Pg.317]    [Pg.251]    [Pg.692]    [Pg.239]    [Pg.58]    [Pg.329]    [Pg.201]    [Pg.82]    [Pg.49]    [Pg.230]    [Pg.4]    [Pg.20]    [Pg.49]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Ionic strength

© 2024 chempedia.info