Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids treatment

The anion-exchange reactions of ionic liquids can really be divided into two distinct categories direct treatment of halide salts with Lewis acids, and the formation of ionic liquids by anion metathesis. These two approaches are dealt with separately, as quite different experimental methods are required for each. [Pg.12]

Regarding the color, we only see a need for colorless ionic liquids in very specific applications (see above). One easy treatment that often reduces coloration quite impressively, especially of imidazolium ionic liquids, is purification by column chromatography/filtration over silica 60. For this purification method, the ionic liquid is dissolved in a volatile solvent such as CFF2C12. Usually, most of the colored impurities stick to the silica, while the ionic liquid is eluted with the solvent. By repetition of the process several times, a seriously colored ionic liquid can be converted into an almost completely colorless material. [Pg.28]

Preparation of ionic liquids by treatment of amines with halide donors in the presence of metal halides [HNR3]C1/A1C13 Akzo Nobel NV, Netherlands 2000 31... [Pg.31]

Kitazume and Kasai [55] have investigated the Reformatsky reaction in three ionic liquids. This reaction involves treatment of an a-bromo ester with zinc to give an a-zinc bromide ester, which in turn reacts with an aldehyde to give an addition product. An example is given in Scheme 5.1-26. Moderate to good yields (45-95 %) were obtained in ionic liquids such as [EDBU][OTf] for the reactions between ethyl bro-moacetate or ethyl bromodifluoroacetate and benzaldehyde [55]. [Pg.187]

Davis and co-workers have carried out the first examples of the Knoevenagel condensation and Robinson annulation reactions [61] in the ionic liquid [HMIM][PFg] (HMIM = l-hexyl-3-methylimidazolium) (Scheme 5.1-33). The Knoevenagel condensation involved the treatment of propane-1,3-dinitrile with a base (glycine) to generate an anion. This anion added to benzaldehyde and, after loss of a water molecule, gave l,l-dicyano-2-phenylethene. The product was separated from the ionic liquid by extraction with toluene. [Pg.189]

Ionic liquids formed by treatment of a halide salt with a Lewis acid (such as chloro-aluminate or chlorostannate melts) generally act both as solvent and as co-catalyst in transition metal catalysis. The reason for this is that the Lewis acidity or basicity, which is always present (at least latently), results in strong interactions with the catalyst complex. In many cases, the Lewis acidity of an ionic liquid is used to convert the neutral catalyst precursor into the corresponding cationic active form. The activation of Cp2TiCl2 [26] and (ligand)2NiCl2 [27] in acidic chloroaluminate melts and the activation of (PR3)2PtCl2 in chlorostannate melts [28] are examples of this land of activation (Eqs. 5.2-1, 5.2-2, and 5.2-3). [Pg.221]

The use of ionic liquids as reaction media for the palladium-catalyzed Heck reaction was first described by Kaufmann et ak, in 1996 [85]. Treatment of bromoben-zene with butyl acrylate to provide butyl trans-cinnamate succeeded in high yield in molten tetraallcylammonium and tetraallcylphosphonium bromide salts, without addition of phosphine ligands (Scheme 5.2-16). [Pg.241]

As new compounds, very limited research has been done to evaluate the biological effects of ionic liquids. The topical effect of [EMIM]C1/A1C13 melts and [EMIMjCl on the integument of laboratory rat has been investigated. The study reports that [EMIMjCl is not in itself responsible for tissue damage. However, the chloroaluminate salt can induce tissue irritation, inflammation, and necrosis, due to the presence of aluminium chloride. However, treatments for aluminium chloride and hydrochloric acid are well documented. This study needs to be expanded to the other ionic liquids, and their toxicity need to be investigated [46]. [Pg.278]

It was quite recently reported that La can be electrodeposited from chloroaluminate ionic liquids [25]. Whereas only AlLa alloys can be obtained from the pure liquid, the addition of excess LiCl and small quantities of thionyl chloride (SOCI2) to a LaCl3-sat-urated melt allows the deposition of elemental La, but the electrodissolution seems to be somewhat Idnetically hindered. This result could perhaps be interesting for coating purposes, as elemental La can normally only be deposited in high-temperature molten salts, which require much more difficult experimental or technical conditions. Furthermore, La and Ce electrodeposition would be important, as their oxides have interesting catalytic activity as, for instance, oxidation catalysts. A controlled deposition of thin metal layers followed by selective oxidation could perhaps produce cat-alytically active thin layers interesting for fuel cells or waste gas treatment. [Pg.300]

Even though Ti02-based materials have been far more investigated than any other photocatalyst and this chapter is dedicated to these systems, it is important at least to mention here some of the promising alternative materials studied for wastewater treatment. CdS hollow nanospheres were prepared in a single-step hydrothermal route by Li et al. [109] using the ionic liquid l-butyl-3-methylimidazolium... [Pg.103]

In practical cases, it is the solute charges that are modeled explicitly, and treated as permanent source charges. In contrast, the whole solvent medium is usually treated as a continuum, without any explicit, permanent, source charges. (This is reasonable for a solvent made of small, neutral molecules ionic liquids would obviously need a different treatment.) Since there are no permanent charges in the solvent,... [Pg.442]

In 2002 Mehnert and co-workers were the first to apply SILP-catalysis to Rh-catalysed hydroformylation [74], They described in detail the preparation of a surface modified silica gel with a covalently anchored ionic liquid fragment (Scheme 7.7). The complex N-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazole was reacted with 1-chlorobutane to give the complex l-butyl-3-(3-triethoxysilylpropyl)- 4,5-dihydroimidazolium chloride. The latter was further treated with either sodium tetrafluoroborate or sodium hexafluorophosphate in acetonitrile to introduce the desired anion. In the immobilisation step, pre-treated silica gel was refluxed with a chloroform solution of the functionalised ionic liquid to undergo a condensation reaction giving the modified support material. Treatment of the obtained monolayer of ionic liquid with additional ionic liquid resulted in a multiple layer of free ionic liquid on the support. [Pg.203]

Fire retardant treatment, for wood, 26 348 Fire science, 11 450 Fire test methods, 11 449—450 Fire test terminology, 19 588 Fire-tube furnaces, 12 319—320, 327 Firing, of ferrites, 11 73 Firming agents, 12 32 as food additives, 12 57 First aid and rescue, 21 858 First aid, for nitric acid exposure, 17 192 First failure, time to, 26 987 First falling rate period, 23 67 First-generation ionic liquids, 26 837-838, 841, 865... [Pg.361]

Organic color pigments, for inks, 14 317 Organic compound control, in municipal water treatment, 26 125 Organic compound extraction, ionic liquids in, 26 873-875... [Pg.652]

Secondary wastewater treatment, 25 888 Second falling rate period, 23 66 Second-generation ionic liquids, 26 838, 847, 865... [Pg.825]

Chapter S examines various models used to describe solution and compmmd phases, including those based on random substitution, the sub-lattice model, stoichiometric and non-stoichiometric compounds and models applicable to ionic liquids and aqueous solutions. Tbermodynamic models are a central issue to CALPHAD, but it should be emphasised that their success depends on the input of suitable coefficients which are usually derived empirically. An important question is, therefore, how far it is possible to eliminate the empirical element of phase diagram calculations by substituting a treatment based on first principles, using only wave-mecbanics and atomic properties. This becomes especially important when there is an absence of experimental data, which is frequently the case for the metastable phases that have also to be considered within the framework of CALPHAD methods. [Pg.19]


See other pages where Ionic liquids treatment is mentioned: [Pg.14]    [Pg.186]    [Pg.691]    [Pg.261]    [Pg.278]    [Pg.14]    [Pg.186]    [Pg.691]    [Pg.261]    [Pg.278]    [Pg.12]    [Pg.13]    [Pg.18]    [Pg.25]    [Pg.37]    [Pg.39]    [Pg.82]    [Pg.226]    [Pg.273]    [Pg.321]    [Pg.101]    [Pg.104]    [Pg.113]    [Pg.143]    [Pg.232]    [Pg.209]    [Pg.161]    [Pg.184]    [Pg.184]    [Pg.327]    [Pg.415]    [Pg.249]    [Pg.191]    [Pg.13]    [Pg.18]    [Pg.25]   
See also in sourсe #XX -- [ Pg.691 ]




SEARCH



Liquid treatment

© 2024 chempedia.info