Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic compounds packing

When the radius ratio of an ionic compound is less than about 0.4, corresponding to cations that are significantly smaller than the anion, the small tetrahedral holes may be occupied. An example is the zinc-blende structure (which is also called the sphalerite structure), named after a form of the mineral ZnS (Fig. 5.43). This structure is based on an expanded cubic close-packed lattice of the big S2 anions, with the small Zn2+ cations occupying half the tetrahedral holes. Each Zn2+ ion is surrounded by four S2 ions, and each S2" ion is surrounded by four Zn2+ ions so the zinc-blende structure has (4,4)-coordination. [Pg.322]

Many ionic compounds are considered to pack in such as way that the anions form a close-packed lattice in which the metal cations fill holes or interstitial sites left between the anions. These lattices, however, may not necessarily he as tightly packed as the label close-packed implies. The radius of an F ion is approximately 133 pm. The edge distances of the cubic unit cells of LiF, NaF, KF, RbF, and CsF, all of which... [Pg.332]

A solid that contains cations and anions in balanced whole-number ratios is called an ionic compound. Sodium chloride, commonly known as table salt, is a simple example. Sodium chloride can form through the vigorous chemical reaction of elemental sodium and elemental chlorine. The appearance and composition of these substances are very different, as Figure 2-24 shows. Sodium is a soft, silver-colored metal that is an array of Na atoms packed closely together. Chlorine is a faintly yellow-green toxic gas made up of diatomic, neutral CI2 molecules. When these two elements react, they form colorless ciystals of NaCl that contain Na and Cl" ions in a 1 1 ratio. [Pg.104]

The packing in ionic crystals requires that ions of opposite charges alternate with one another to maximize attractions among ions. A second important feature of ionic crystals is that the cations and anions usually are of different sizes. Usually the cations are smaller than the anions. Consequently, ionic compounds adopt a variety of structures that depend on the charges and sizes of the ions. One way to discuss ionic structures is to identify a crystal lattice for one set of ions, and then describe how the other ions pack within the lattice of the first set. [Pg.793]

As in ionic compounds, the atoms in a binary intermetallic compound show a tendency, albeit less pronounced, to be surrounded by atoms of the other kind as far as possible. However, it is not possible to fulfill this condition simultaneously for both kinds of atoms if they form a closest-packed arrangement. For compositions MXn with n < 3 it cannot be fulfilled for either the M or the X atoms in every case every atom has to have some adjacent atoms of the same kind. Only with a higher content of X atoms, beginning with MX3 (n > 3), are atomic arrangements possible in which every M atom is surrounded solely by X atoms the X atoms, however, must continue to have other X atoms as neighbors. [Pg.158]

An ionic compound typically contains a multitude of ions grouped together in a highly ordered three-dimensional array. In sodium chloride, for example, each sodium ion is surrounded by six chloride ions and each chloride ion is surrounded by six sodium ions (Figure 6.11). Overall there is one sodium ion for each chloride ion, but there are no identifiable sodium-chloride pairs. Such an orderly array of ions is known as an ionic crystal. On the atomic level, the crystalline structure of sodium chloride is cubic, which is why macroscopic crystals of table salt are also cubic. Smash a large cubic sodium chloride crystal with a hammer, and what do you get Smaller cubic sodium chloride crystals Similarly, the crystalline structures of other ionic compounds, such as calcium fluoride and aluminum oxide, are a consequence of how the ions pack together. [Pg.194]

This brings us to a class of compounds too often overlooked in the discussion of simple ionic compounds the transition metal halides. In general, these compounds (except fluorides) crystallize in structures that are hard to reconcile with the structures of simple ionic compounds seen previously (Figs. 4.1-4.3). For example, consider the cadmium iodide structure (Fig. 7.8). It is true that the cadmium atoms occupy octahedral holes in a hexagonal closest packed structure of iodine atoms, but in a definite layered structure that can be described accurately only in terms of covalent bonding and infinite layer molecules. [Pg.142]

Many ionic compounds are considered to pack in such as way that the anions form a close-packed lattice... [Pg.381]

Many ionic compounds have structures based on either fee or hep packing of one of the ions. Both of these structures have sites of fourfold coordination and sites of sixfold coordination. Several simple structures for AB compounds are illustrated in Figure 13.12. Both the zinc blende structure, which is based on... [Pg.140]

Anion lattice The key to the simple description of ionic compounds. Often close-packed. Bond diagram The key to the simple description of covalent compounds. Often a fragment of a close-packed array 7>. [Pg.12]

The relationship between cubic close-packed (ccp) structures and ionic compounds of type B1 is obvious. Interstitial sites with respect to metal positions are at fractional coordinates of the type 00 and equivalent to the ionic sites in Bl. The Madelung constant of Al type metals with interstitially localized free electrons is therefore the same as that of rocksalt structures. It is noted that the interstitial sites define the same face-centred lattice as the metal ions. [Pg.191]

Anions and cations pack together into a crystal lattice as shown to the right for NaCI. Ionic compounds are also known as salts. [Pg.120]

Since the Braggs first determination, thousands of structures, most of them far more complicated than that of sodium chloride, have been determined by x-ray diffraction. For covalently bonded low molecular weight species (such as benzene, iodine, or stannic chloride), it is often of interest to see just how the discrete molecules are packed together in the crystalline state, but the crystal structures affect the chemistry of such substances only to a minor degree. However, for most predominantly ionic compounds, for metals, and for a large number of substances in which atoms are covalently bound into chains, sheets, or three dimensional networks, their chemistry is very largely determined by the structure of the solid. [Pg.174]


See other pages where Ionic compounds packing is mentioned: [Pg.184]    [Pg.192]    [Pg.730]    [Pg.209]    [Pg.9]    [Pg.243]    [Pg.231]    [Pg.42]    [Pg.673]    [Pg.55]    [Pg.35]    [Pg.190]    [Pg.60]    [Pg.14]    [Pg.15]    [Pg.20]    [Pg.295]    [Pg.75]    [Pg.336]    [Pg.209]    [Pg.674]    [Pg.108]    [Pg.126]    [Pg.172]    [Pg.195]    [Pg.215]    [Pg.294]    [Pg.141]    [Pg.421]    [Pg.436]    [Pg.127]    [Pg.46]    [Pg.115]    [Pg.6]    [Pg.28]    [Pg.188]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Ionic compounds

© 2024 chempedia.info