Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic compounds Lewis structure

All the following compounds are charactenzed by ionic bonding between a group I metal cation and a tetrahedral anion Wnte an appropriate Lewis structure for each anion remembenng to specify formal charges where they exist... [Pg.50]

Ca— 0 is improperly written as a covalent Lewis structure, although CaO is an ionic compound. In addition, there are only two electrons around the Ca atom. [Ca]2+[ 0 ]2" is a more plausible Lewis structure for CaO. [Pg.214]

Which of the following is the correct Lewis structure for the ionic compound Ca(C102)2... [Pg.118]

Creating the Lewis structures of molecules is a method for determining the sequence of bonding within a molecule and its three-dimensional shape. This works best for covalently bonded molecules, but can also work for ionic compounds. For example, this method can be used to explain why the sequence of bonding in water is H-O-H, rather than H-H-O, and why it has a bent structure, rather than linear. [Pg.260]

In this section, you have used Lewis structures to represent bonding in ionic and covalent compounds, and have applied the quantum mechanical theory of the atom to enhance your understanding of bonding. All chemical bonds—whether their predominant character is ionic, covalent, or between the two—result from the atomic structure and properties of the bonding atoms. In the next section, you will learn how the positions of atoms in a compound, and the arrangement of the bonding and lone pairs of electrons, produce molecules with characteristic shapes. These shapes, and the forces that arise from them, are intimately linked to the physical properties of substances, as you will see in the final section of the chapter. [Pg.171]

Lewis formula (for an ionic compound) A representation of the structure of an ionic compound showing the formula unit of ions in terms of their Lewis symbols. Lewis structure A diagram showing how electron pairs are shared between atoms in a molecule. Examples H-C1 0=C=0. [Pg.1038]

An ionic compound is indicated by writing the Lewis structures for the two ions. [Pg.2]

FIGURE 7.4 Of the 16 chemistry topics examined (1-16) on the final exam, overall the POGIL students had more correct responses to the same topics than their L-I counterparts. Some topics did not appear on all the POGIL exams. Asterisks indicate topics that were asked every semester and compared to the L-I group. The topics included a solution problem (1), Lewis structures (2), chiral center identification (3), salt dissociation (4), neutralization (5), acid-base equilibrium (6), radioactive half-life (7), isomerism (8), ionic compounds (9), biological condensation/hydrolysis (10), intermolecular forces (11), functional group identification (12), salt formation (13), biomolecule identification (14), LeChatelier s principle (15), and physical/chemical property (16). [Pg.141]

Explain whether the bonds in these compounds would be ionic or covalent and show Lewis structures for them ... [Pg.25]

A 1,3-dipole is a compound of the type a—Het—b that may undergo 1,3-dipolar cycloadditions with multiply bonded systems and can best be described with a zwitter-ionic all-octet Lewis structure ( Huisgen ylid ). An unsaturated system that undergoes 1,3-dipolar cycloadditions with 1,3-dipoles is called dipolarophile. Alkenes, alkynes, and their diverse hetero derivatives may react as dipolarophiles. Since there is a considerable variety of 1,3-dipoles—Table 12.2 shows a small selection—1,3-dipolar cycloadditions represent not only a general but also the most universal synthetic approach to five-membered heterocycles. [Pg.504]

In order to fully appreciate and understand molecular structure, you will need to be able to construct representations of various molecules. One of the easiest ways to do this is using Lewis structures. The procedure is a bit more complicated than for ionic compounds because of the increasing complexity of covalent compounds. The basic procedure for constructing Lewis diagrams of molecules consists of 4 steps ... [Pg.117]

You have used Lewis structures to demonstrate how ionic and covalent bonds form between atoms. When given two elements, you determined how many atoms of each element bond together to form a compound, according to the octet rule. For example, you used the periodic table and your understanding of the octet rule to determine how calcium and bromine bond to form an ionic compound. Using a Lewis structure, you determined that calcium and bromine form a compound that contains two bromine atoms for every calcium atom, as shown in Figure 3.39. [Pg.95]

You have seen how Lewis structures can help you draw models of ionic, covalent, and polar covalent compounds. When you draw a Lewis structure, you can count how many electrons are needed by each atom to achieve a stable octet. Thus, you can find out the ratio in which the atoms combine. Once you know the ratio of the atoms, you can write the chemical formula of the compound. Drawing Lewis structures can become overwhelming, however, when you are dealing with large molecules. Is there a faster and easier method for writing chemical formulas ... [Pg.96]

You can use valences to write chemical formulas. This method is faster than using Lewis structures to determine chemical formulas. As well, you can use this method for both ionic and covalent compounds. In order to write a chemical formula using valences, you need to know which elements (or polyatomic ions) are in the compound, and their valences. You also need to know how to use the zero sum rule For neutral chemical formulas containing ions, the sum of positive valences plus negative valences of the atoms in a compound must equal zero. [Pg.98]

Lewis structures can represent the formation of ionic and covalent compounds according to the octet rule. [Pg.107]

Draw a Lewis structure to represent each ionic compound. [Pg.107]

Draw Lewis structures representing the following ionic compounds. [Pg.647]

We have already seen that when metals and nonmetals react to form solid binary ionic compounds, electrons are transferred and the resulting ions typically have noble gas electron configurations. An example is the formation of KBr, where the K ion has the [Ar] electron configuration and the Br- ion has the [Kr] electron configuration. In writing Lewis structures, the rule is that... [Pg.611]

Q.4. Predict the Lewis structure of the simple compound for both ionic and covalent structures, comment on a non-octet configuration and estimate the formal charge on each atom, where appropriate. [Pg.117]

Using Lewis Structures Potassium metal will react with sulfur to form an ionic compound. Use the periodic table to determine the number of valence electrons for each element. Draw a Lewis dot structure to show how they would combine to form ions. How would you write the formula for the resulting compound ... [Pg.147]

When sulfur reacts with metals, it often forms an ionic compound. Draw a Lewis dot structure of a sulfur atom. Then, draw the Lewis structure of the ion it will form. Name an element that has the same outer-level electron structure as a sulfur ion. [Pg.150]

The formulas of the chemical compounds are no accident. There is an NaCl, but no NaCl2 there is a Cap2, but no CaF. On the other hand, certain pairs of elements form two, or even more, different compounds, e.g. C]u20, CuO N2O, NO, NO2. In the case of ionic compounds the relative number of positive and negative ions in a formula is governed simply by the rule of electrical neutrality. In covalent compounds, or within polyatomic ions (like NO ), structures are formed by covalent bonds (i.e., electron sharing). A hierarchy of covalent bonding theories exists, of which the simplest, the drawing of Lewis structures, is emphasized in this and in most elementary texts. [Pg.123]


See other pages where Ionic compounds Lewis structure is mentioned: [Pg.199]    [Pg.774]    [Pg.956]    [Pg.102]    [Pg.363]    [Pg.165]    [Pg.216]    [Pg.179]    [Pg.212]    [Pg.249]    [Pg.11]    [Pg.144]    [Pg.97]    [Pg.130]    [Pg.294]    [Pg.497]    [Pg.108]    [Pg.101]   
See also in sourсe #XX -- [ Pg.621 ]

See also in sourсe #XX -- [ Pg.354 ]




SEARCH



Compounds Lewis structures

Ionic compounds

Ionic compounds structures

Ionic structure

Lewis structures

© 2024 chempedia.info