Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion pairs kinetics

Finally, in many cases the acidity equilibria cannot be measured but the rate of proton transfer or transmetallation can be measured to give an ionic or ion pair kinetic acidity. Studies using the rates of proton transfer have included the use of isotopes such as tritium and deuterium5,6. The rate is then used to calculate the Brpnsted slope, a, by plotting the logarithm of the proton transfer rate against the pK, as determined by the equilibrium acidity, for a series of compounds. From this plot, the approximate pKa of an unknown compound can be determined by comparison of the same type of compounds. [Pg.734]

Keywords Alkene radical cations Ion pairs Kinetics Stereochemical memory effects Tandem reactions... [Pg.14]

The PES of the PI IHms (3 pm thickness) is observed in the UV, and visible speetral regions, due to the interactions with charge transfer between donor and aceeptor fragments of the PI chains (formation of CTC). Study of the photogeneration qirantum yield Cfeld dependence gives the evidence that the photogeneration mechanism is a FATD of radical ion pairs kinetically associated with the excited CTC. [Pg.9]

Keywords Acetal, Anomeric effect, Diastereoselectivity, Glycosylation, Ion pair. Kinetic isotope effect, Stereoelectronic effects... [Pg.141]

Another difficulty is that the extent to which hydrogen bonded association and ion-pairing influence the observed kinetics has yet to be determined. However the high order of the reaction in the stoichiometric concentration of nitric acid would seem to preclude a transition state composed only of a nitronium ion and an aromatic molecule. [Pg.225]

The kinetics of this process is strongly affected by an association phenomenon. It has been known that the active center is the silanolate ion pair, which is in equUibrium with dormant ion pair complexes (99,100). The polymerization of cyclosiloxanes in the presence of potassium silanolate shows the kinetic order 0.5 with respect to the initiator, which suggests the principal role of dimer complexes (101). [Pg.46]

Substituted 2-haloaziridines are also known to undergo a number of reactions without ring opening. For example, displacement of chlorine in (264) with various nucleophilic reagents has been found to occur with overall inversion of stereochemistry about the aziridine ring (65JA4538). The displacements followed first order kinetics and faster rates were noted for (264 R = Me) than for (264 R = H). The observed inversion was ascribed to either ion pairing and/or stereoselectivity. [Pg.74]

Winstein suggested that two intermediates preceding the dissociated caibocation were required to reconcile data on kinetics, salt effects, and stereochemistry of solvolysis reactions. The process of ionization initially generates a caibocation and counterion in proximity to each other. This species is called an intimate ion pair (or contact ion pair). This species can proceed to a solvent-separated ion pair, in which one or more solvent molecules have inserted between the caibocation and the leaving group but in which the ions have not diffused apart. The free caibocation is formed by diffusion away from the anion, which is called dissociation. [Pg.270]

An elaboration of the ion-pair concept includes an ion sandwich in which a preassociation occurs between a potential nucleophile and a reactant. Such an ion sandwich might be a kinetic intermediate which accelerates dissociation. Alternatively, if a caibocation were quite unstable, it might always return to reactant unless a nucleophile was properly positioned to capture the caibocation. [Pg.272]

Stabilization of a carbocation intermediate by benzylic conjugation, as in the 1-phenylethyl system shown in entry 8, leads to substitution with diminished stereosped-ficity. A thorough analysis of stereochemical, kinetic, and isotope effect data on solvolysis reactions of 1-phenylethyl chloride has been carried out. The system has been analyzed in terms of the fate of the intimate ion-pair and solvent-separated ion-pair intermediates. From this analysis, it has been estimated that for every 100 molecules of 1-phenylethyl chloride that undergo ionization to an intimate ion pair (in trifluoroethanol), 80 return to starting material of retained configuration, 7 return to inverted starting material, and 13 go on to the solvent-separated ion pair. [Pg.306]

Kinetic studies of the addition of hydrogen chloride to styrene support the conclusion that an ion-pair mechanism operates because aromatic conjugation is involved. The reaction is first-order in hydrogen chloride, indicating that only one molecule of hydrogen chloride participates in the rate-determining step. ... [Pg.355]

The kinetic method of determining relative acidity suffers from one serious complication, however. This complication has to do with the fate of the ion pair that is formed immediately on removal of the proton. If the ion pair separates and difiuses into the solution rapidly, so that each deprotonation results in exchange, the exchange rate is an accurate measure of the rate of deprotonation. Under many conditions of solvent and base, however, an ion pair may return to reactants at a rate exceeding protonation of the carbanion by the solvent. This phenomenon is called internal return ... [Pg.407]

In a strong electric field, a free electron acquires enough kinetic energy to cause an impact ionization i.e., an electron impacting on a neutral molecule causes an emission of a new electron, leading to the formation of new electron-ion pair. The new free electron is, in turn, accelerated to a velocity sufficient to cause further ionization. This leads to an avalanche-type generation of free electrons and ions. The electric field provides the necessary energy in such a way that the process can continue without the external radiation which was necessary for the onset of the process. [Pg.1216]

Detailed kinetic studies of the substitution reactions of anions with heterocyclic compounds to include, for example, the effects of solvent, added salts, and ion pair formation have not been made as yet. [Pg.292]

When diazomethane is slowly added to excess lactam, the anions formed can interact with unreacted lactam by means of hydrogen bonds to form ion pairs similar to those formed by acetic acid-tri-ethylamine mixtures in nonpolar solvents. The methyldiazonium ion is then involved in an ion association wdth the mono-anion of a dimeric lactam which is naturally less reactive than a free lactam anion. The velocity of the Sn2 reaction, Eq. (7), is thus decreased. However, the decomposition velocity of the methyldiazonium ion, Eq. (6a), is constant and, hence, the S l character of the reaction is increased which favors 0-methylation. It is possible that this effect is also involved in kinetic dependence investigations have shown that with higher saccharin concentrations more 0-methylsaccharin is formed. [Pg.267]

Chemical models of electrolytes take into account local structures of the solution due to the interactions of ions and solvent molecules. The underlying information stems from spectroscopic, kinetic, and electrochemical experiments, as well as from dielectric relaxation spectroscopy. The postulated structures include ion pairs, higher ion aggregates, and solvated and selectively solvated ions. [Pg.465]

The reaction (Eq. (5)) in THF yields labile THF adducts which are converted into the more stable HMPA adducts by addition of HMPA. The various equilibria existing between Na2Fe(CO)4 and several donor solvents are described in a detailed paper by Collman in HMPA, the solvent-separated supernucleophilic ion pair [Na+x HMPA x Fe(CO)4 ] is the kinetically dominant species, with no kinetic contribution from free [Fe(CO)J2 . In THF, Na2Fe(CO)4 is much less dissociated, with tight-ion paired [NaFe(CO)4] as the kinetically important species [96],... [Pg.12]

Kinetic studies on the nitration of nitrobenzene by nitronium borofhioride in the polar solvents sulphuric acid, methane-sulphuric acid, and acetonitrile show the reaction to be first-order in both nitronium salt and aromatic110. With the first two solvents, the rate coefficients are similar for nitration by nitric acid and by the nitronium salts, indicating a common nitrating entity. With acetonitrile the rate coefficients are very much lower, consistent with a much lower concentration of free nitronium ions in this medium and thus with the nitronium salts existing as ion pairs in organic solvents (see Table 25). [Pg.45]

Kinetic studies with caesium cyclohexylamide have also been performed593. For reaction of tritiated benzene, the kinetic order was one in both hydrocarbon and caesium cyclohexylamide ion-pair (Table 180) and rate coefficients were... [Pg.273]

Demonstrating that the value of parameter k (evaluated from the kinetics) agrees with K]P (evaluated from an independent method such as spectroscopy) does not constitute proof of the prior-equilibrium mechanism. The values will be the same, regardless. Even if the association complex is immaterial to the chemistry, the value of its formation constant will result from the workup of the kinetic data. To prove this requirement, consider that the system in question does form an appreciable quantity of the ion pair,... [Pg.147]

Throughout these sections it has been assumed that protonation and association equilibria are established on time scales much shorter than those for the kinetic steps. For the usual protonations and ion-pairings that assumption will always be true, except when very rapid reactions are being studied by certain techniques presented in Chapter 11. On the other hand, if carbon acids are involved, or any sluggish association reactions, the assumption of rapid prior equilibria may not hold true. [Pg.148]

Radiolytic ethylene destruction occurs with a yield of ca. 20 molecules consumed/100 e.v. (36, 48). Products containing up to six carbons account for ca. 60% of that amount, and can be ascribed to free radical reactions, molecular detachments, and low order ion-molecule reactions (32). This leaves only eight molecules/100 e.v. which may have formed ethylene polymer, corresponding to a chain length of only 2.1 molecules/ ion. Even if we assumed that ethylene destruction were entirely the result of ionic polymerization, only about five ethylene molecules would be involved per ion pair. The absence of ionic polymerization can also be demonstrated by the results of the gamma ray initiated polymerization of ethylene, whose kinetics can be completely explained on the basis of conventional free radical reactions and known rate constants for these processes (32). An increase above the expected rates occurs only at pressures in excess of ca. 20 atmospheres (10). The virtual absence of ionic polymerization can be regarded as one of the most surprising aspects of the radiation chemistry of ethylene. [Pg.266]


See other pages where Ion pairs kinetics is mentioned: [Pg.83]    [Pg.22]    [Pg.197]    [Pg.83]    [Pg.22]    [Pg.197]    [Pg.1590]    [Pg.404]    [Pg.324]    [Pg.273]    [Pg.274]    [Pg.407]    [Pg.1315]    [Pg.80]    [Pg.210]    [Pg.41]    [Pg.82]    [Pg.83]    [Pg.153]    [Pg.189]    [Pg.190]    [Pg.287]    [Pg.668]    [Pg.722]    [Pg.67]    [Pg.37]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Ion kinetics

© 2024 chempedia.info