Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine hydride

Cyclopentene derivatives with carboxylic acid side-chains can be stereoselectively hydroxy-lated by the iodolactonization procedure (E.J. Corey, 1969, 1970). To the trisubstituted cyclopentene described on p. 210 a large iodine cation is added stereoselectively to the less hindered -side of the 9,10 double bond. Lactone formation occurs on the intermediate iod-onium ion specifically at C-9ot. Later the iodine is reductively removed with tri-n-butyltin hydride. The cyclopentane ring now bears all oxygen and carbon substituents in the right stereochemistry, and the carbon chains can be built starting from the C-8 and C-12 substit""" ... [Pg.275]

Chemical ingenuity in using the properties of the elements and their compounds has allowed analyses to be carried out by processes analogous to the generation of hydrides. Osmium tetroxide is very volatile and can be formed easily by oxidation of osmium compounds. Some metals form volatile acetylacetonates (acac), such as iron, zinc, cobalt, chromium, and manganese (Figure 15.4). Iodides can be oxidized easily to iodine (another volatile element in itself), and carbonates or bicarbonates can be examined as COj after reaction with acid. [Pg.100]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

Iodine azide, on the other hand, forms pure adducts with A -, A - and A -steroids by a mechanism analogous to that proposed for iodine isocyanate additions. Reduction of such adducts can lead to aziridines. However, most reducing agents effect elimination of the elements of iodine azide from the /mwj -diaxial adducts of the A - and A -olefins rather than reduction of the azide function to the iodo amine. Thus, this sequence appears to be of little value for the synthesis of A-, B- or C-ring aziridines. It is worthy to note that based on experience with nonsteroidal systems the application of electrophilic reducing agents such as diborane or lithium aluminum hydride-aluminum chloride may yet prove effective for the desired reduction. Lithium aluminum hydride accomplishes aziridine formation from the A -adducts, Le., 16 -azido-17a-iodoandrostanes (97) in a one-step reaction. The scope of this addition has been considerably enhanced by the recent... [Pg.24]

Another route to the amido complexes originates from [(>j-Tp )W(CO) (PhC=CMe)(OTf)l and benzylamine and yields [(i -Tp )W(CO)(PhC=CMe) (NHCH2Ph)] (96JA6916). The latter can be protonated with tetrafluoroboric acid to give the amine derivative [(> -Tp )W(CO)(PhC=CMe)(NH2CH2Ph)](Bp4), and this process can be reversed by -butyllithium. Hydride abstraction by silver tetrafiuoroborate, molecular iodine, or PhsCPEe leads to the cationic imine derivatives [(> -Tp )W(CO)(PhC=CMe)(HN=CHPh)]". -Butyllithium deproto-nates the product and gives the neutral azavinylidene species [(> -Tp )W(CO) (PhC=CMe)(N=CHPh)]. The latter with silver tetrafiuoroborate forms the cationic nitrile species [(j -Tp )W(CO)(PhC=CMe)(N=CPh)](Bp4). [Pg.187]

Of the several syntheses available for the phenothiazine ring system, perhaps the simplest is the sulfuration reaction. This consists of treating the corresponding diphenylamine with a mixture of sulfur and iodine to afford directly the desired heterocycle. Since the proton on the nitrogen of the resultant molecule is but weakly acidic, strong bases are required to form the corresponding anion in order to carry out subsequent alkylation reactions. In practice such diverse bases as ethylmagnesium bromide, sodium amide, and sodium hydride have all been used. Alkylation with (chloroethyl)diethylamine affords diethazine (1), a compound that exhibits both antihista-minic and antiParkinsonian activity. Substitution of w-(2-chloroethyl)pyrrolidine in this sequence leads to pyrathiazine (2), an antihistamine of moderate potency. [Pg.373]

The key features of Curran s productive and elegant tandem radical cyclization strategy are illustrated in a retrosynthetic analysis for hirsutene (1) (see Scheme 27). The final synthetic event was projected to be an intermolecular transfer of a hydrogen atom from tri-rc-butyltin hydride to the transitory tricyclic vinyl radical 131. The latter can then be traced to bicyclic tertiary radical 132 and thence to monocyclic primary radical 133 through successive hex-5-enyl-like radical cyclizations. It was anticipated that the initial radical 133 could be generated through the abstraction of the iodine atom from... [Pg.409]

The concentration of this solution was established by decomposing the lithium aluminum hydride with excess iodine according to the following equation ... [Pg.103]

The preparation of Pans-1,2-cyclohexanediol by oxidation of cyclohexene with peroxyformic acid and subsequent hydrolysis of the diol monoformate has been described, and other methods for the preparation of both cis- and trans-l,2-cyclohexanediols were cited. Subsequently the trans diol has been prepared by oxidation of cyclohexene with various peroxy acids, with hydrogen peroxide and selenium dioxide, and with iodine and silver acetate by the Prevost reaction. Alternative methods for preparing the trans isomer are hydroboration of various enol derivatives of cyclohexanone and reduction of Pans-2-cyclohexen-l-ol epoxide with lithium aluminum hydride. cis-1,2-Cyclohexanediol has been prepared by cis hydroxylation of cyclohexene with various reagents or catalysts derived from osmium tetroxide, by solvolysis of Pans-2-halocyclohexanol esters in a manner similar to the Woodward-Prevost reaction, by reduction of cis-2-cyclohexen-l-ol epoxide with lithium aluminum hydride, and by oxymercuration of 2-cyclohexen-l-ol with mercury(II) trifluoro-acetate in the presence of ehloral and subsequent reduction. ... [Pg.88]

Halogenation of 106 with triphenylphosphine, iodine, and imidazole provided the iodo derivative 109. On treatment with lithium aluminum hydride, 109 was converted into two endocyclic alkenes, 110 and di-O-isopro-pylidenecyclohexanetetrol, in the ratio of 2 1. Oxidation of 110 with dimethyl sulfoxide - oxalyl chloride afforded the enone 111.1,4-Addition of ethyl 2-lithio-l,3-dithiane-2-carboxylate provided compound 112. Reduction of 112 with lithium aluminum hydride, and shortening of the side-chain, gave compound 113, which was converted into 114 by deprotection. ... [Pg.40]

Silicon, like carbon, is relatively inactive at ordinary temperatures. But, when heated, it reacts vigorously with the halogens (fluorine, chlorine, bromine, cmd iodine) to form halides and with certain metals to form silicides. It is unaffected by all acids except hydrofluoric. At red heat, silicon is attacked by water vapor or by oxygen, forming a surface layer of silicon dioxide. When silicon and carbon are combined at electric furnace temperatures of 2,000 to 2,600 °C (3,600 to 4700 °F), they form silicon carbide (Carborundum = SiC), which is an Importeint abrasive. When reacted with hydrogen, silicon forms a series of hydrides, the silanes. Silicon also forms a series of organic silicon compounds called silicones, when reacted with various organic compounds. [Pg.309]

Alkylating reagents such as boron trifluoride-methanol, sulfuric acid-methanol, methanol-hydrochloric acid and methyl iodine-sodium hydride do not react efficiently with pyrithiobac. Trimethylsilyldiazomethane may be used for the methyl-ation of pyrithiobac. [Pg.563]

The nucleophilic displacement of the iodine moiety in 2-iodoben-zoates mediated by triphenyltin hydride and di-n-butyltin dichloride in aqueous solution has been demonstrated (Eq. 6.16).33 For example, 2-iodobenzoic acid reacts with a toluene solution of Ph3SnH/l,3-(N02)2 C6H4/aq. NaHC03 to give 89% yield of salicylic acid. [Pg.176]

The hydride-methyl complex OsH(Me)(CO)2(P Pr3)2 reacts with electrophilic reagents. The reaction products depend on the nature of the reagent (Scheme 39). Whereas the reaction with iodine gives almost quantitatively the diiodide OsI2(CO)2(P,Pr3)2, the reaction with a five-fold excess of phenylacetylene does not lead to the formation of the previously mentioned bis-alkynyl complex... [Pg.40]

Heating the hydride strongly with chlorine, bromine or iodine leads to incandescence. [Pg.1322]

Bromine pentafluoride Hydrogen-containing materials Chlorine Nitrogen compounds Chlorine trifluoride Hydrogen-containing materials Fluorine Hydrides Iodine Ammonia... [Pg.1660]

Ethyl sulfate Flammable liquids Fluorine Formamide Freon 113 Glycerol Oxidizing materials, water Ammonium nitrate, chromic acid, the halogens, hydrogen peroxide, nitric acid Isolate from everything only lead and nickel resist prolonged attack Iodine, pyridine, sulfur trioxide Aluminum, barium, lithium, samarium, NaK alloy, titanium Acetic anhydride, hypochlorites, chromium(VI) oxide, perchlorates, alkali peroxides, sodium hydride... [Pg.1477]

Iodine, as in the case of germacyclanes, reacts smoothly with digermanes271 or trigermanes272 yielding at —48 °C iododigermanes or iodotrigermane. The use of bromine leads to degradation of the hydrides ... [Pg.509]


See other pages where Iodine hydride is mentioned: [Pg.352]    [Pg.258]    [Pg.116]    [Pg.157]    [Pg.161]    [Pg.332]    [Pg.25]    [Pg.140]    [Pg.26]    [Pg.98]    [Pg.120]    [Pg.187]    [Pg.28]    [Pg.325]    [Pg.695]    [Pg.73]    [Pg.392]    [Pg.412]    [Pg.494]    [Pg.103]    [Pg.3]    [Pg.217]    [Pg.100]    [Pg.145]    [Pg.169]    [Pg.176]    [Pg.1913]    [Pg.94]    [Pg.72]    [Pg.329]    [Pg.853]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Reductive iodination, tributyltin hydride

© 2024 chempedia.info