Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Introduction to Rational Molecular Modeling Approaches

In this paper a method [11], which allows for an a priori BSSE removal at the SCF level, is for the first time applied to interaction densities studies. This computational protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interactions) to highlight its relationship to the standard Roothaan equations and its special usefulness in the evaluation of molecular interactions, has recently been successfully used [11-13] for evaluating Eint in a number of intermolecular complexes. Comparison of standard SCF interaction densities with those obtained from the SCF-MI approach should shed light on the effects of BSSE removal. Such effects may then be compared with those deriving from the introduction of Coulomb correlation corrections. To this aim, we adopt a variational perturbative valence bond (VB) approach that uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. Finally, no bias should be introduced in our study by the particular approach chosen to analyze the observed charge density rearrangements. Therefore, not a model but a theory which is firmly rooted in Quantum Mechanics, applied directly to the electron density p and giving quantitative answers, is to be adopted. Bader s Quantum Theory of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a theory has also been recently applied to molecular crystals as a valid tool to rationalize and quantitatively detect crystal field effects on the molecular densities [16-18]. [Pg.105]

An introduction to the phenomena of NLO will be given first (Section 2), followed by the evaluation of molecular second-order polarizabilities by theoretical models that both allow their rationalization and the design of promising molecular structures (Section 3). It will be necessary to develop different models for molecular symmetries, but the approach will remain the same. NLO effects and experiments used for the determination of molecular (hyper)polarizabilities will be dealt with in Section 4. Finally, experimental investigations will be dealt with in Section 5, followed by some concluding remarks. [Pg.124]


See other pages where Introduction to Rational Molecular Modeling Approaches is mentioned: [Pg.343]    [Pg.346]    [Pg.348]    [Pg.350]    [Pg.352]    [Pg.354]    [Pg.356]    [Pg.358]    [Pg.360]    [Pg.362]    [Pg.364]    [Pg.366]    [Pg.343]    [Pg.346]    [Pg.348]    [Pg.350]    [Pg.352]    [Pg.354]    [Pg.356]    [Pg.358]    [Pg.360]    [Pg.362]    [Pg.364]    [Pg.366]    [Pg.242]    [Pg.94]    [Pg.129]    [Pg.376]    [Pg.66]    [Pg.2522]    [Pg.2547]    [Pg.19]   


SEARCH



Introduction Modeling

Introduction approach

Model approach

Molecular approach

Molecular introduction

Molecular modeling approach

Molecular modelling introduction

Rational

Rationalism

© 2024 chempedia.info