Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal transfer coefficient

Combining (6.9)-(6.14), an internal transfer coefficient can be derived, reiat-ing the incident plane wave to the internal electric field propagating in the positive x direction in layer j at interface (j — 1 )j ... [Pg.255]

An experimentally convenient technique for relating internal transfer coefficients is based on applying an experimental factor R, the effective diffusivity factor, to the rigid-drop equations. R is the ratio of effective and molecular diffusivity in a stagnant drop. Equation (IV-8), in effect, defines the R factor. R ranges from 1.6 to 3.3 circulating drops at moderate Reynolds... [Pg.235]

Correlations for Convective Heat Transfer. In the design or sizing of a heat exchanger, the heat-transfer coefficients on the inner and outer walls of the tube and the friction coefficient in the tube must be calculated. Summaries of the various correlations for convective heat-transfer coefficients for internal and external flows are given in Tables 3 and 4, respectively, in terms of the Nusselt number. In addition, the friction coefficient is given for the deterrnination of the pumping requirement. [Pg.483]

Fig. 35. Correlations for calculating heat-transfer coefficients for (a) turbine external jackets, internal cods, and baffle cods, and (b) for close-clearance... Fig. 35. Correlations for calculating heat-transfer coefficients for (a) turbine external jackets, internal cods, and baffle cods, and (b) for close-clearance...
Internal Regenerator Bed Colls. Internal cods generate high overall heat-transfer coefficients [550 W / (m -K)] and typically produce saturated steam up to 4.6 MPa (667 psi). Lower heat fluxes are attained when producing superheated steam. The tube banks are normally arranged horizontally in rows of three or four, but because of their location in a continuously active bubbling or turbulent bed, they offer limited duty flexibdity with no shutdown or start-up potential. [Pg.219]

In developing correlations for the mass-transfer coefficients Icq and /cl, the various authors have assumed different but internally compatible correlations for the effective interfacial area a. It therefore would be inappropriate to mix the correlations of different authors unless it has been demonstrated that there is a valid area of overlap between them. [Pg.624]

As can be seen in the table above, the upper two results for heat transfer coefficients hp between particle and gas are about 10% apart. The lower three results for wall heat transfer coefficients, h in packed beds have a somewhat wider range among themselves. The two groups are not very different if errors internal to the groups are considered. Since the heat transfer area of the particles is many times larger than that at the wall, the critical temperature difference will be at the wall. The significance of this will be shown later in the discussion of thermal sensitivity and stability. [Pg.22]

Internal recycle flow rate created by the blower was 620 times larger than the make-up feed rate in an actual experiment. At this recycle flow, a particulate based Rep = 3050 was achieved. The corresponding transfer coefficients were very high and gradients were negligible. [Pg.87]

Dg = Mean or centerline diameter of internal coil helix, mm (ft) hj = heat transfer coefficient on inside surface of jacket = viscosity at bulk fluid temperature, [(N s)/m ][kg/(m sec)] = viscosity at die wall temperature, [(N s)/m ][kg/(m sec)]... [Pg.621]

Heat transfer through a pipe wall. A pipeline parr 15m long carries water. Its internal diameter d, is 34 mm and its external diameter is 42 mm. The thermal conductivity of the pipe X is 40 W m K". The pipeline is located outdoors, where the outdoor temperature Oao is -8 C. Determine the minimum flow velocity necessary in the pipe to prevent the pipe from freezing. The heat transfer coefficient inside the pipe is = 1000 W m K and outside the pipe = 5 W m" K aiid = 4 W m -K . The specific heat ca-... [Pg.109]

Thermal characteristics of material layers for each type of wall must be specified, including thickness, conductivity, density, and specific heat. Moreover, the features of internal and external surfaces of each wall must be specified, including solar absorptance and roughness, which affect surface heat transfer coefficients. [Pg.1074]

The essential feature of a Jluidized-bed reactor is that the solids are held in suspension by the upward flow of the reacting fluid this promotes high mass and heat transfer rates and good mixing. Heat transfer coefficients in the order of 200 W/m-°C between jackets and internal coils are typically obtained. The solids may be a catalyst, a reactant (in some fluidized combustion processes), or an inert powder added to promote heat transfer. [Pg.136]

The influence of the mass transfer resistance on the purity and on the steady state internal concentration profiles are shown in Figs. 9-11 and 9-12. A higher value for the mass transfer coefficient corresponds to a situation where mass transfer resistance is less important, and a better performance of the SMB will be obtained with sharper internal concentration profiles. [Pg.237]

Figure 10-86A. Influence of air content on the heat transfer coefficient of steam containing air. (Used by permission Edmister, W. C., and Marchello, J. M. Petro/Chem. Engineer, June 1966, p. 48. Petroleum Engineer International.)... Figure 10-86A. Influence of air content on the heat transfer coefficient of steam containing air. (Used by permission Edmister, W. C., and Marchello, J. M. Petro/Chem. Engineer, June 1966, p. 48. Petroleum Engineer International.)...
The cooling duty can be provided by either making the draught tube an internal heat exchanger or with a heat exchanger in an external circulation loop. The mass transfer coefficient for external loop airlift Fermenter is estimated as 8... [Pg.151]

Derive an expression relating the pressure drop for the turbulent flow of a fluid in a pipe to the heat transfer coefficient at the walls on the basis of the simple Reynolds analogy. Indicate the assumptions which are made and the conditions under which you would expect it to apply closely. Air at 320 K and atmospheric pressure is flowing through a smooth pipe of 50 mm internal diameter, and the pressure drop over a 4 m length is found to be 150 mm water gauge. By how much would you expect the air temperature to fall over the first metre if the. wall temperature there is 290 K ... [Pg.846]

In a shell and lube heat exchanger with horizontal tubes 25 mm external diameter and 22 rnm internal diameter, benzene is condensed on the outside by means of water flowing through the tubes at the rate of 0.03 m Vs. If the water enters at 290 K and leaves at 300 K and the heat transfer coefficient on the water side is 850 W/in2 K, what total length of tubing will be required ... [Pg.846]

Liquid is heated in a vessel by means of steam which is supplied to an internal coil in the vessel. When the vessel contains 1000 kg of liquid it takes half an hour to heat the contents from 293 to 368 K if the coil is supplied with steam at 373 K. The process is modified so that liquid at 293 K is continuously fed to the vessel at the rate of 0.28 kg/s. The total contents of the vessel are always being maintained at 1000 kg. What is the equilibrium temperature which the contents of the vessel will reach, if heat losses to the surroundings are neglected and the overall heat transfer coefficient remains constant ... [Pg.850]

Figure 3 illustrates some additional capability of the flow code. Here no pressure gradient is Imposed (this is then drag or "Couette flow only), but we also compute the temperatures resulting from Internal viscous dissipation. The shear rate in this case is just 7 — 3u/3y — U/H. The associated stress is.r — 177 = i/CU/H), and the thermal dissipation is then Q - r7 - i/CU/H). Figure 3 also shows the temperature profile which is obtained if the upper boundary exhibits a convective rather than fixed condition. The convective heat transfer coefficient h was set to unity this corresponds to a "Nusselt Number" Nu - (hH/k) - 1. [Pg.274]

Schubert, K., Experimental determination of heat transfer coefficients in micro heat exchangers, in Proceedings of the 6th International Conference on Microreaction Technology, IMRET 6, pp. 241-246 (11-14 March 2002),... [Pg.117]

Optimized microfabrication and advanced assembly led to the use of thin platelets, in an original version 100 pm thick with a 80 pm micro channel depth, so that very thin walls (20 pm in the case sketched) remain for separating the fluids. Therefore, also the total inner reaction volume with respect to the total construction volume or the active internal surface area is very large. The latter surface amounts to 300 cm (for both the heat transfer and reaction sides) at a cubic volume of 1 cm. Indeed, the micro heat exchangers exhibited high heat transfer coefficients for gas [46] and liquid (Figure 3.10) [47, 48] flows. [Pg.269]

GP 9] [R 16[ The extent of external transport limits was made in an approximate manner as for the internal transport limits (see above), as literature data on heat and mass transfer coefficients at low Peclet numbers are lacking [78]. Using a Pick s law analysis, negligible concentration differences from the bulk to the catalyst sur-... [Pg.328]

Consider the reaction used as the basis for Illustrations 10.1 to 10.3. Determine the volume required to produce 2 million lb of B annually in a plug flow reactor operating under the conditions described below. The reactor is to be operated 7000 hr annually with 97% conversion of the A fed to the reactor. The feed enters at 163 C. The internal pipe diameter is 4 in. and the piping is arranged so that the effective reactor volume can be immersed in a heat sink maintained at a constant temperature of 160 °C. The overall heat transfer coefficient based on the... [Pg.364]

Experimental results for particles in the millimeter range are shown in Fig. 12 in terms of unitary heat transfer height z/TV for different average particle diameters for both empty columns and columns with internal baffles. The various data give a range ofNH values between 2 and 7 for the 7.2-m experimental apparatus, corresponding to particle-to-gas heat transfer coefficients between 300 and 1,000 kcal/irf hr °C. The measured pressure drops for the two columns were of the order of 10 mm water gage. [Pg.514]


See other pages where Internal transfer coefficient is mentioned: [Pg.255]    [Pg.255]    [Pg.92]    [Pg.456]    [Pg.244]    [Pg.245]    [Pg.187]    [Pg.357]    [Pg.254]    [Pg.560]    [Pg.1184]    [Pg.1424]    [Pg.334]    [Pg.1085]    [Pg.14]    [Pg.218]    [Pg.849]    [Pg.177]    [Pg.177]    [Pg.989]    [Pg.195]    [Pg.399]    [Pg.330]    [Pg.12]    [Pg.355]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Internal mixer heat transfer coefficient

© 2024 chempedia.info