Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal conversion, fluorescence

The Perrin-Jablonski diagram (Figure 3.1) is convenient for visualizing in a simple way the possible processes photon absorption, internal conversion, fluorescence, intersystem crossing, phosphorescence, delayed fluorescence and triplet-triplet transitions. The singlet electronic states are denoted S0 (fundamental electronic state), Si, S2,... and the triplet states, Ti,T2,. Vibrational levels are associated with each electronic state. It is important to note that absorption is very fast ( 10 15 s) with respect to all other processes (so that there is no concomitant... [Pg.34]

A term in photochemistry and photophysics describing an isoenergetic radiationless transition between two electronic states having different multiphcities. Such a process often results in the formation of a vibrationally excited molecular entity, at the lower electronic state, which then usually deactivates to its lowest vibrational energy level. See also Internal Conversion Fluorescence... [Pg.372]

Absorbance Internal conversion Fluorescence Intersystem crossing Phosphorescence Energy transfer Luminescence... [Pg.7]

The low (j)iici value of 1.1 molecules of HCl evolved per 100 photons absorbed indicates tht most of the excitation energy is dissipated by other routes radiationless internal conversion, fluorescence, cis-trans isomerization and cyclization. [Pg.162]

Once the excited molecule reaches the S state it can decay by emitting fluorescence or it can undergo a fiirtlier radiationless transition to a triplet state. A radiationless transition between states of different multiplicity is called intersystem crossing. This is a spin-forbidden process. It is not as fast as internal conversion and often has a rate comparable to the radiative rate, so some S molecules fluoresce and otliers produce triplet states. There may also be fiirther internal conversion from to the ground state, though it is not easy to detemiine the extent to which that occurs. Photochemical reactions or energy transfer may also occur from S. ... [Pg.1143]

Single molecules also have promise as probes for local stmcture when doped into materials tliat are tliemselves nonfluorescent. Rlrodamine dyes in botli silicate and polymer tliin films exliibit a distribution of fluorescence maxima indicative of considerable heterogeneity in local environments, particularly for the silicate material [159]. A bimodal distribution of fluorescence intensities observed for single molecules of crystal violet in a PMMA film has been suggested to result from high and low viscosity local sites witliin tire polymer tliat give rise to slow and fast internal conversion, respectively [160]. [Pg.2500]

This behavior is consistent with experimental data. For high-frequency excitation, no fluorescence rise-time and a biexponential decay is seen. The lack of rise-time corresponds to a very fast internal conversion, which is seen in the trajectory calculation. The biexponential decay indicates two mechanisms, a fast component due to direct crossing (not seen in the trajectory calculation but would be the result for other starting conditions) and a slow component that samples the excited-state minima (as seen in the tiajectory). Long wavelength excitation, in contrast, leads to an observable rise time and monoexponential decay. This corresponds to the dominance of the slow component, and more time spent on the upper surface. [Pg.306]

VD = vibrational deactivation IC = internal conversion F = fluorescence IX = intersystem crossing and P = phosphorescence. [Pg.299]

Though theories have been proposed (32-35) to explain this phenomenon, the mechanism of fluorescence is still not yet fully understood. Jankow and Willis (36) proposed a mechanism which involves a direct excitation of the molecule or an impurity to an excited state, followed by internal conversion and then reversion back to the original state with emission of light. This mechanism can be explained as follows A molecule in the lowest vibrational level of the ground state A is transferred to a certain vibrational level in the excited state D. The molecule tends to cascade into the lowest vibrational level of state D by collisions with other excited molecules. It passes from state D to state C and then to state B by radiationless transi-... [Pg.323]

This considerable enhancement in redox properties may however remain chemically hidden. Several causes may converge to mask these properties. First of all electron transfer is an intermolecular act of reactivity even when thermodynamically feasible it may have to compete with very rapid intramolecular acts of deactivation (fluorescence, phosphorescence, internal conversion)99. The rate of electron transfer is given by the Rehm-Weller equation96,100... [Pg.1069]

FIGURE 7.4 Modified Jablonski diagram showing transitions between excited states and the ground state. Radiative processes are shown by straight lines, radiationless processes by wavy lines. IC = internal conversion ISC = intersystem crossing, vc = vibrational cascade hvf = fluorescence hVp = phosphorescence. [Pg.314]

Thus if one starts with one pure isomer of a substance, this isomer can undergo first-order transitions to other forms, and in turn these other forms can undergo transitions among themselves, and eventually an equilibrium mixture of different isomers will be generated. The transitions between atomic and molecular excited states and their ground states are also mostly first-order processes. This holds both for radiative decays, such as fluorescence and phosphorescence, and for nonradiative processes, such as internal conversions and intersystem crossings. We shall look at an example of this later in Chapter 9. [Pg.110]

Figure 9.1. A Jablonski diagram. So and Si are singlet states, Ti is atriplet state. Abs, absorption F, fluorescence P, phosphorescence IC, internal conversion and ISC, intersystem crossing. Radiative transitions are represented by full lines and nonradiative transitions by dashed lines... Figure 9.1. A Jablonski diagram. So and Si are singlet states, Ti is atriplet state. Abs, absorption F, fluorescence P, phosphorescence IC, internal conversion and ISC, intersystem crossing. Radiative transitions are represented by full lines and nonradiative transitions by dashed lines...
Resonant y-ray absorption is directly connected with nuclear resonance fluorescence. This is the re-emission of a (second) y-ray from the excited state of the absorber nucleus after resonance absorption. The transition back to the ground state occurs with the same mean lifetime t by the emission of a y-ray in an arbitrary direction, or by energy transfer from the nucleus to the K-shell via internal conversion and the ejection of conversion electrons (see footnote 1). Nuclear resonance fluorescence was the basis for the experiments that finally led to R. L. Mossbauer s discovery of nuclear y-resonance in ir ([1-3] in Chap. 1) and is the basis of Mossbauer experiments with synchrotron radiation which can be used instead of y-radiation from classical sources (see Chap. 9). [Pg.8]


See other pages where Internal conversion, fluorescence is mentioned: [Pg.627]    [Pg.112]    [Pg.81]    [Pg.627]    [Pg.1687]    [Pg.993]    [Pg.627]    [Pg.112]    [Pg.81]    [Pg.627]    [Pg.1687]    [Pg.993]    [Pg.1143]    [Pg.2494]    [Pg.2948]    [Pg.303]    [Pg.425]    [Pg.286]    [Pg.300]    [Pg.300]    [Pg.284]    [Pg.400]    [Pg.400]    [Pg.324]    [Pg.148]    [Pg.162]    [Pg.6]    [Pg.479]    [Pg.20]    [Pg.20]    [Pg.22]    [Pg.192]    [Pg.202]    [Pg.508]    [Pg.9]    [Pg.121]    [Pg.121]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Internal conversion

Internal fluorescence

© 2024 chempedia.info