Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediate compounds benzynes

The following intermediates in the synthesis of naturally occurring materials have been synthesized by reactions based on a benzyne intermediate. The benzyne precursor is shown. By retrosynthetic analysis identify an appropriate co-reactant that would form the desired compound. [Pg.1061]

Special iodonium salts. A range of o-trimethylsilyl-phenyliodonioarenes [111] and heteroarenes [112] as well as some similar Wc-compounds coming from norbornadiene [113] and o-carborane [114] have been obtained from the corresponding bis trimethylsilyl precursors upon reaction with one equivalent of (diacetoxyiodo)benzene. These compounds are useful for their facile in situ conversion into benzyne-type intermediates for benzyne itself the whole procedure is available in Organic Syntheses [115]. A recent improvement involved the synthesis of a new benzyne precursor illustrated in Scheme 38 [116]. [Pg.87]

Such results indicate that, from a mechanistic point of view, it is not a matter of a simple aromatic nucleophilic substitution (in any case very difficult if not yi benzyne), but more probably of a radical substitution on an activated complex of the TCDD (SRNl mechanism) (1 ) this mechanism is favoured by the fact that the radical anion of TCDD is particularly stabilized (IJ). How this radical anion is generated from the initiator peroxide and how it reacts with the hydrogen donor (PEG or the solvent) is not at this moment clear however, interesting to note, degradation of TCDD by u.v. irradiation leads to the same intermediate compounds. [Pg.377]

Further mechanistic evidence comes from trapping experiments. When bromobenzene is treated with KNH2 in the presence of a diene such as furan, a Diels-Alder reaction (Section 14.5) occurs, implying that the symmetrical intermediate is a benzyne, formed by elimination of HBr from bromobenzene. Ben-zyne is too reactive to be isolated as a pure compound but, in the presence of water, addition occurs to give the phenol, in the presence of a diene, Diels-Alder cycloaddition takes place. [Pg.575]

Compounds of special interest whose preparation is described include 1,2,3-benzothiadiazole 1,1-dioxide (a benzyne precursor under exceptionally mild conditions), bis(l,3-diphenylimida-zolidinylidene-2) (whose chemistry is quite remarkable), 6- di-melhylamino)julvene (a useful intermediate for fused-ring non-benzenoid aromatic compounds), dipkenylcyclopropenone (the synthesis of which is a milestone in theoretical organic chemistry), ketene di(2-melhoxyethyl) acetal (the easiest ketene acetal to prepare), 2-methylcyclopenlane-l,3-dione (a useful intermediate in steroid synthesis), and 2-phenyl-5-oxazolone (an important intermediate in amino acid chemistry). [Pg.145]

Acid chloride 5 is readily available from the known benzylic alcohol 6,4e but intermediate 4 is still rather complex. It was recognized that compound 4 could conceivably be formed in one step from 2-methoxyfuran (9)10 and iodotriflate 10. The latter compound was designed with the expectation that it could be converted to benzyne 8," a highly reactive species that could be intercepted in an intermolecular Diels-Alder reaction with 2-methoxyfuran (9) to give 7. The intermediacy of 7 is expected to be brief, for it should undergo facile conversion to the aromatized isomer 4 either in situ or during workup. [Pg.510]

The chemistry of dehydrobenzene, the parent aryne, has become well established during the past almost twenty years 4>. It is essentially the chemistry of a short lived (half-life ca. 10-4 sec.), and highly electrophilic intermediate. It reacts with a large number of nucleophiles, and undergoes cyclo-addition reactions with a wide variety of compounds. A number of observations have led us, and others, to concentrate our efforts on the tetrahalogenobenzynes. It seemed reasonable to predict that the presence of four electron withdrawing substituents on the aryne (1) would result in a significant increase in the electrophilicity compared with that of benzyne. [Pg.38]

The photochemistry of borazine delineated in detail in these pages stands in sharp contrast to that of benzene. The present data on borazine photochemistry shows that similarities between the two compounds are minimal. This is due in large part to the polar nature of the BN bond in borazine relative to the non-polar CC bond in benzene. Irradiation of benzene in the gas phase produces valence isomerization to fulvene and l,3-hexadien-5-ynes Fluorescence and phosphorescence have been observed from benzene In contrast, fluorescence or phosphorescence has not been found from borazine, despite numerous attempts to observe it. Product formation results from a borazine intermediate (produced photochemically) which reacts with another borazine molecule to form borazanaphthalene and a polymer. While benzene shows polymer formation, the benzyne intermediate is not known to be formed from photolysis of benzene, but rather from photolysis of substituted derivatives such as l,2-diiodobenzene ... [Pg.19]

Various organolithium intermediates may be posmlated for the synthesis of functionalized indoles and other heterocyclic compounds, from substituted Af-allylanilines (331a-c) or the cychc analog 332, on treatment with f-BuLi. For example, in equation 81 intermediate 333, derived from 331a, was quenched with deuterium oxide. Participation of benzyne metallated intermediates, such as 334, derived from 332, is surmised in equation 82 and other processes. The products of equations 81 and 82 can be characterized by H and NMR spectra . [Pg.398]

Scheme 11.9 illustrates some of the types of compounds that can be prepared via benzyne intermediates. [Pg.728]

Dibenzopyrrocolines have been prepared by intramolecular addition of benzyne intermediates and by nucleophilic substitutions, as shown in Scheme 6 with the synthesis of ( )-cryptowoline (2) and the related dehydro base 39 by Bennington and Morin (7). ( )-6 -Bromotetrahydroisoquinoline 37, prepared by standard procedures, when heated with copper powder in dimethylformamide afforded dibenzopyrrocoline 38 in low yield, and 39 was formed when 37 was allowed to react with potassium amide in liquid ammonia. Compound 39 was converted to ( )-cryptowoline iodide (2) by hydrogenolysis of O-benzyl ether 39 and quartemization with methyl iodide. [Pg.111]

Despite the fact that the history of hetarynes is older than that of the benzynes (cf. 2), physical data on these compounds are scarce. Numerous trapping experiments furnished evidence for the formation of brradicaloid intermediates in the field of five-membered heterocycles (didehydrofurans, -thiophenes, and -pyrroles)." Direct spectroscopic data on these species, however, do not exist, which may be attributable to the increased ring strain in the five-membered o-arynes, associated with a strong tendency to undergo ring-opening reactions. [Pg.773]

Trapping of an intermediate. In some cases, the suspected intermediate is known to be one that reacts in a given way with a certain compound. The intermediate can then be trapped by running the reaction in the presence of that compound. For example, benzynes (p. 646) react with dienes in the Diels-Alder reaction (5-47). In any reaction where a benzyne is a suspected intermediate, the addition of a diene and the detection of the Diels-Alder adduct indicate that the benzyne was probably present. [Pg.218]

Wikel and Paget153 showed that a benzyne intermediate was not participating in the cyclization of 154a to the fused benzothiazole 155 with sodium hydride since the isomeric chloro compound 154b did not give 155 either under the same conditions or on treatment with potassium amide in liquid ammonia. [Pg.218]

Quinoxaline 1-oxide (209) reacts with phenyl isocyanate to give 2-anilinoquinoxaline (210) together with 1,3-diphenyl-l-(2-quinoxalinyl)-urea (211) and cyclized oxidation product of the urea 212.215 2-Quinoxalinone 4-oxide (205) and its 1-methyl derivative undergo addition reactions, e.g., with phenyl isocyanate and benzyne to give compounds 214 and 216, respectively.216 These reactions are formulated as proceeding via the intermediate cycloadducts 213 and 215. Compound 216 has also been obtained by photolysis of 3-(o-hydroxy-phenyl)quinoxaline 1-oxide.51 1,3-Dipolar cycloaddition of quinoxaline... [Pg.416]

When 11 decomposes in the presence of an added nucleophile, the benzyne intermediate is trapped by the nucleophile as it is formed. Or, if a conjugated diene is present, benzyne will react with it by a [4 + 2] cycloaddition. In the absence of other compounds with which it can react, benzyne will undergo [2 + 2] cycloaddition to itself ... [Pg.559]


See other pages where Intermediate compounds benzynes is mentioned: [Pg.724]    [Pg.229]    [Pg.539]    [Pg.505]    [Pg.57]    [Pg.982]    [Pg.4]    [Pg.72]    [Pg.289]    [Pg.196]    [Pg.1041]    [Pg.207]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.212]    [Pg.242]    [Pg.24]    [Pg.38]    [Pg.119]    [Pg.11]    [Pg.27]    [Pg.618]    [Pg.41]    [Pg.470]    [Pg.989]    [Pg.194]    [Pg.194]    [Pg.1504]    [Pg.27]    [Pg.283]    [Pg.275]    [Pg.262]    [Pg.563]   
See also in sourсe #XX -- [ Pg.353 , Pg.362 , Pg.364 , Pg.374 , Pg.375 ]




SEARCH



Benzyne intermediates

Benzynes compounds

Compound intermediates

© 2024 chempedia.info