Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interferences, sensor

Two methods are used to measure pH electrometric and chemical indicator (1 7). The most common is electrometric and uses the commercial pH meter with a glass electrode. This procedure is based on the measurement of the difference between the pH of an unknown or test solution and that of a standard solution. The instmment measures the emf developed between the glass electrode and a reference electrode of constant potential. The difference in emf when the electrodes are removed from the standard solution and placed in the test solution is converted to a difference in pH. Electrodes based on metal—metal oxides, eg, antimony—antimony oxide (see Antimony AND ANTIMONY ALLOYS Antimony COMPOUNDS), have also found use as pH sensors (8), especially for industrial appHcations where superior mechanical stabiUty is needed (see Sensors). However, because of the presence of the metallic element, these electrodes suffer from interferences by oxidation—reduction systems in the test solution. [Pg.464]

In contrast, various sensors are expected to respond in a predictable and controlled manner to such diverse parameters as temperature, pressure, velocity or acceleration of an object, intensity or wavelength of light or sound, rate of flow, density, viscosity, elasticity, and, perhaps most problematic, the concentration of any of millions of different chemical species. Furthermore, a sensor that responds selectively to only a single one of these parameters is often the goal, but the first attempt typically produces a device that responds to several of the other parameters as well. Interferences are the bane of sensors, which are often expected to function under, and be immune to, extremely difficult environmental conditions. [Pg.389]

Electrochemical Microsensors. The most successful chemical microsensor in use as of the mid-1990s is the oxygen sensor found in the exhaust system of almost all modem automobiles (see Exhaust control, automotive). It is an electrochemical sensor that uses a soHd electrolyte, often doped Zr02, as an oxygen ion conductor. The sensor exemplifies many of the properties considered desirable for all chemical microsensors. It works in a process-control situation and has very fast (- 100 ms) response time for feedback control. It is relatively inexpensive because it is designed specifically for one task and is mass-produced. It is relatively immune to other chemical species found in exhaust that could act as interferants. It performs in a very hostile environment and is reHable over a long period of time (36). [Pg.392]

Inertial sensors are useful devices in both science and industry. Higher precision sensors could find practical scientific applications in the areas of general relativity (Chow et ah, 1985), geodesy and geology. Important applications of such devices occur also in the field of navigation, surveying and analysis of earth structures. Matter-wave interferometry has recently shown its potential to be an extremely sensitive probe for inertial forces (Clauser, 1988). First, neutron interferometers have been used to measure the Earth rotation (Colella et ah, 1975) and the acceleration due to gravity (Werner et ah, 1979) in the end of the seventies. In 1991, atom interference techniques have been used in... [Pg.359]

The high specificity required for the analysis of physiological fluids often necessitates the incorporation of permselective membranes between the sample and the sensor. A typical configuration is presented in Fig. 7, where the membrane system comprises three distinct layers. The outer membrane. A, which encounters the sample solution is indicated by the dashed lines. It most commonly serves to eliminate high molecular weight interferences, such as other enzymes and proteins. The substrate, S, and other small molecules are allowed to enter the enzyme layer, B, which typically consist of a gelatinous material or a porous solid support. The immobilized enzyme catalyzes the conversion of substrate, S, to product, P. The substrate, product or a cofactor may be the species detected electrochemically. In many cases the electrochemical sensor may be prone to interferences and a permselective membrane, C, is required. The response time and sensitivity of the enzyme electrode will depend on the rate of permeation through layers A, B and C the kinetics of enzymatic conversion as well as the charac-... [Pg.62]

In Section 8.2.8 we have discussed the standard addition method as a means to quantitate an analyte in the presence of unknown matrix effects cf. Section 13.9). While the matrix effect is corrected for, the presence of other emalytes may still interfere with the analysis. The method can be generalized, however, to the simultaneous analysis of p analytes. Multiple standard additions are applied in order to determine the analytes of interest using many q > p) analytical sensors. It... [Pg.367]

Mossbauer resonance of Zn to study the influence of the gravitational field on electromagnetic radiation. A Ga ZnO source (4.2 K) was used at a distance of 1 m from an enriched ZnO absorber (4.2 K). A red shift of the photons by about 5% of the width of the resonance line was observed. The corresponding shift with Fe as Mossbauer isotope would be only 0.01%. The result is in accordance with Einstein s equivalence principle. Further gravitational red shift experiments using the 93.3 keV Mossbauer resonance of Zn were performed later employing a superconducting quantum interference device-based displacement sensor to detect the tiny Doppler motion of the source [66, 67]. [Pg.262]

Note that this method enables one to observe variation of electric conductivity of a sample due to adsorption of hydrogen atoms appearing as a result of the spillover effect, no more. In a S3rstem based on this effect it is rather difficult to estimate the flux intensity of active particles between the two phases (an activator and a carrier). The intensity value obtained from such an experiment is always somewhat lower due to the interference of two opposite processes in such a sample, namely, birth of active particles on an activator and their recombination. When using such a complicated system as a semiconductor sensor of molecular hydrogen (in the case under consideration), one should properly choose both the carrier and the activator, and take care of optimal coverage of the carrier surface with metal globules and effect of their size [36]. [Pg.245]

In such a well-defined analytical system the term selectivity is relevant to multicomponent analysis. Selectivity of an analytical procedure characterizes the extent to which n given analytes can be measured simultaneously by n sensors (detecting channels) without interferences by other components... [Pg.214]


See other pages where Interferences, sensor is mentioned: [Pg.424]    [Pg.269]    [Pg.161]    [Pg.71]    [Pg.153]    [Pg.81]    [Pg.323]    [Pg.424]    [Pg.269]    [Pg.161]    [Pg.71]    [Pg.153]    [Pg.81]    [Pg.323]    [Pg.38]    [Pg.297]    [Pg.1659]    [Pg.290]    [Pg.291]    [Pg.292]    [Pg.193]    [Pg.498]    [Pg.503]    [Pg.391]    [Pg.392]    [Pg.319]    [Pg.103]    [Pg.426]    [Pg.428]    [Pg.428]    [Pg.339]    [Pg.938]    [Pg.72]    [Pg.69]    [Pg.153]    [Pg.173]    [Pg.188]    [Pg.371]    [Pg.68]    [Pg.163]    [Pg.258]    [Pg.51]    [Pg.339]    [Pg.167]    [Pg.3]    [Pg.427]    [Pg.175]    [Pg.293]   
See also in sourсe #XX -- [ Pg.239 , Pg.284 , Pg.320 ]




SEARCH



© 2024 chempedia.info