Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interaction saturation

O. Poulsen, Resonant fast-beam interactions saturated absorption and two-photon absorption, in Atomic Physics 8, ed. by 1. Lindgren, S. Svanberg, A. Rosen (Plenum, New York, 1983), p. 485... [Pg.701]

It can be observed from Table 3 that the yj values decrease in the following hierarchy -hexane > cyclohexane > 1-hexene > benzene. This is of course in accordance with the relative strengths of the ionic liquid-organic solute interactions. Saturated non-polar aliphatic molecules in the form of... [Pg.102]

RESONANT FAST-BEAM/LASER INTERACTIONS SATURATED ABSORPTION AND TWO-PHOTON ABSORPTION... [Pg.485]

In the second picture, an interfacial layer or region persists over several molecular diameters due to a more slowly decaying interaction potential with the solid (note Section X-7C). This situation would then be more like the physical adsorption of vapors (see Chapter XVII), which become multilayer near the saturation vapor pressure (e.g.. Fig. X-15). Adsorption from solution, from this point of view, corresponds to a partition between bulk and interfacial phases here the Polanyi potential concept may be used (see Sections X-7C, XI-1 A, and XVII-7). [Pg.390]

Molecular adsorbates usually cover a substrate with a single layer, after which the surface becomes passive with respect to fiirther adsorption. The actual saturation coverage varies from system to system, and is often detenumed by the strength of the repulsive interactions between neighbouring adsorbates. Some molecules will remain intact upon adsorption, while others will adsorb dissociatively. This is often a frinction of the surface temperature and composition. There are also often multiple adsorption states, in which the stronger, more tightly bound states fill first, and the more weakly bound states fill last. The factors that control adsorbate behaviour depend on the complex interactions between adsorbates and the substrate, and between the adsorbates themselves. [Pg.294]

As with SCRF-PCM only macroscopic electrostatic contribntions to the Gibbs free energy of solvation are taken into account, short-range effects which are limited predominantly to the first solvation shell have to be considered by adding additional tenns. These correct for the neglect of effects caused by solnte-solvent electron correlation inclnding dispersion forces, hydrophobic interactions, dielectric saturation in the case of... [Pg.838]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

More sophisticated approaches to describe double layer interactions have been developed more recently. Using cell models, the full Poisson-Boltzmann equation can be solved for ordered stmctures. The approach by Alexander et al shows how the effective colloidal particle charge saturates when the bare particle charge is increased [4o]. Using integral equation methods, the behaviour of the primitive model has been studied, in which all the interactions between the colloidal macro-ions and the small ions are addressed (see, for instance, [44, 45]). [Pg.2678]

Figure C3.2.9. Both nearest neighbour and nonnearest neighbour coupling interactions mediate superexchange between tire temrinal pi-electron groups of rigid dienes witlr saturated bridging units. From [31],... Figure C3.2.9. Both nearest neighbour and nonnearest neighbour coupling interactions mediate superexchange between tire temrinal pi-electron groups of rigid dienes witlr saturated bridging units. From [31],...
From the standpoint of thermodynamics, the dissolving process is the estabHsh-ment of an equilibrium between the phase of the solute and its saturated aqueous solution. Aqueous solubility is almost exclusively dependent on the intermolecular forces that exist between the solute molecules and the water molecules. The solute-solute, solute-water, and water-water adhesive interactions determine the amount of compound dissolving in water. Additional solute-solute interactions are associated with the lattice energy in the crystalline state. [Pg.495]

Excluding the phenomenon of hyperconjugation, the only other means by which electronic effects can be transmitted within saturated molecules, or exerted by inductive substituents in aromatic molecules, is by direct electrostatic interaction, the direct field effect. In early discussions of substitution this was usually neglected for qualitative purposes since it would operate in the same direction (though it would be expected to diminish in the order ortho > meta > para) as the cr-inductive effect and assessment of the relative importance of each is difficult however, the field effect was recognised as having quantitative significance. ... [Pg.126]

Browning Reactions. The fluorescent components formed in the browning reaction (8) of peroxidized phosphatidylethanolamine are produced mainly by interaction of the amine group of PE and saturated aldehydes produced through the decomposition of fatty acid hydroperoxides. [Pg.99]

Direct quantitation of receptor concentrations and dmg—receptor interactions is possible by a variety of techniques, including fluorescence, nmr, and radioligand binding. The last is particularly versatile and has been appHed both to sophisticated receptor quantitation and to dmg screening and discovery protocols (50,51). The use of high specific activity, frequendy pH]- or p lj-labeled, dmgs bound to cmde or purified cellular materials, to whole cells, or to tissue shces, permits the determination not only of dmg—receptor saturation curves, but also of the receptor number, dmg affinity, and association and dissociation kinetics either direcdy or by competition. Complete theoretical and experimental details are available (50,51). [Pg.276]

In principle, ideal decouphng eliminates control loop interactions and allows the closed-loop system to behave as a set of independent control loops. But in practice, this ideal behavior is not attained for a variety of reasons, including imperfect process models and the presence of saturation constraints on controller outputs and manipulated variables. Furthermore, the ideal decoupler design equations in (8-52) and (8-53) may not be physically realizable andthus would have to be approximated. [Pg.737]


See other pages where Interaction saturation is mentioned: [Pg.239]    [Pg.239]    [Pg.447]    [Pg.228]    [Pg.3584]    [Pg.225]    [Pg.239]    [Pg.239]    [Pg.447]    [Pg.228]    [Pg.3584]    [Pg.225]    [Pg.919]    [Pg.1443]    [Pg.1453]    [Pg.1462]    [Pg.1567]    [Pg.1578]    [Pg.1870]    [Pg.1871]    [Pg.1874]    [Pg.1144]    [Pg.18]    [Pg.6]    [Pg.29]    [Pg.172]    [Pg.171]    [Pg.547]    [Pg.138]    [Pg.193]    [Pg.275]    [Pg.367]    [Pg.321]    [Pg.478]    [Pg.262]    [Pg.387]    [Pg.14]    [Pg.33]    [Pg.49]    [Pg.127]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



© 2024 chempedia.info