Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Integrated flow-through sensors

Figure 3.38 — Integrated flow-through sensors. (A) With electrochemical generation of the luminescent reagent. The flow stream path follows the line between the analyte inlet and the outlet to waste. (B) With immobilization of a phosphor (length, 3 cm internal diameter, 2 mm) 1 immobilized phosphor 2 CFG 3 quartz wool plug 4 KEL-F caps 5 hand-tightened screw 6 stainless steel capillaries. (C) Sensor based on reflectance measurements. The sensor membrane is fixed on a Plexiglas disc. Reflectance spectra are measured from the rear side. (Reproduced from [267] and [269] with permission of the American Chemical Society and Elsevier Science Publishers, respectively). Figure 3.38 — Integrated flow-through sensors. (A) With electrochemical generation of the luminescent reagent. The flow stream path follows the line between the analyte inlet and the outlet to waste. (B) With immobilization of a phosphor (length, 3 cm internal diameter, 2 mm) 1 immobilized phosphor 2 CFG 3 quartz wool plug 4 KEL-F caps 5 hand-tightened screw 6 stainless steel capillaries. (C) Sensor based on reflectance measurements. The sensor membrane is fixed on a Plexiglas disc. Reflectance spectra are measured from the rear side. (Reproduced from [267] and [269] with permission of the American Chemical Society and Elsevier Science Publishers, respectively).
One other, very descriptive classification of flow-through sensors is based on the location of the active microzone and its relationship to the detector. Thus, the microzone can be connected (Figs 2.6. A and 2.6.B) or integrated (Fig. 2.6.C) with the measuring instrument. Sensors of the former type use optical or electric connections and are in fact probe sensors incorporated into flow-cells of continuous analytical systems they can be of two types depending on whether the active microzone is located at the probe end (e.g. see [17]) or is built into the flow-cell (e.g. see [18]) — in this latter case. [Pg.54]

Flow-through sensors based on integrated reaction and detection... [Pg.81]

Flow-through sensors integrating detection and a chemical or biochemical reaction rely on immobilization in the probe proper or the flow-cell (or a special housing included in it) of a species intended to take part in or catalyse the reaction by which the analyte, viz. the catalyst or reagent, is measured, according to which the sensors described in this Chapter are divided into two broad categories. [Pg.81]

Sensors based on integrated reaction and detection are the most varied and numerous among flow-through sensors and those that will predictably experience the greatest development in the near future. Both enzyme sensors and immunosensors are bound to become virtually irreplaceable tools in some areas of social interest including clinical and environmental analysis. While other sensors inspired by those discussed in Sections 3.4 and 3.5 may... [Pg.190]

Flow-through sensors based on integrated optical detection and a liquid-liquid separation are relatively scant since the analytes are rarely determined by their photometric or luminescence properties. Thus, with few exceptions, these sensors use amperometric detection —as noted earlier, ISEs and ISFETs are dealt with separately in Section 4.6. [Pg.207]

Most flow-through sensors integrating retention and detection involve placement of an inert support in the flow-cell of a non-destructive spectroscopic detector where the analytes or their retention products are retained temporarily for sensing, and then eluted. Rendering these sensors reusable entails including a regeneration step suited to the way retention is performed. [Pg.213]

FLOW-THROUGH SENSORS FOR MULTIDETERMINATIONS BASED ON INTEGRATED RETENTION AND DETECTION... [Pg.224]

Figure 5.1 — Classification of (bio)chemical flow-through sensors based on integrated reaction, separation and detection according to whether the three processes take place sequentially (A,B) or simultaneously (C) at the sensing microzone. S sample R reagent. (Reproduced from [1] with permission of the Royal Society of Chemistry). Figure 5.1 — Classification of (bio)chemical flow-through sensors based on integrated reaction, separation and detection according to whether the three processes take place sequentially (A,B) or simultaneously (C) at the sensing microzone. S sample R reagent. (Reproduced from [1] with permission of the Royal Society of Chemistry).
Figure 5.2 — Classification of (bio)chemical flow-through sensors based on integrated reaction, separation and detection according to the type of separation technique involved. Figure 5.2 — Classification of (bio)chemical flow-through sensors based on integrated reaction, separation and detection according to the type of separation technique involved.
Figure 5.3 shows the different possible ways in which the ingredients of the (bio)chemical reaction can take part in the sensing process. For example, the analyte can be retained temporarily and take part in the separation process. The reagent can be present in the solution used to immerse the sensor or immobilized in a permanent fashion on a suitable support. Also, the catalyst can be introduced directly across a membrane or be permanently immobilized. Finally, the reaction product can be the species transferred in the separation process or also be temporarily immobilized. These and other, more specific alternatives that are described below are all possible in (bio)chemical flow-through sensors integrating reaction, separation and detection. [Pg.261]

There are two possible configurations for this type of flow-through sensor integrating gas diffusion, reaction and detection that differ in whether the reagent is dissolved in the acceptor solution or immobilized on a sensing microzone located near the diffusion membrane. The descriptions below are based on such a difference. [Pg.271]

The sensing microzone of the flow-through sensor depicted in Fig. 5.9.B1 integrates gas-diffusion and detection with two analytical reactions [28], viz. (a) the urease-catalysed formation of ammonium ion by hydrolysis of urea (the analyte), which takes places on a hydrophilic enzyme membrane in contact with the sample-donor stream, which contains a gel where the enzyme is covalently bound and (b) an acid-b reaction that takes place at the microzone on the other side of the diffusion membrane and involves Bromothymol Blue as indicator. This is a sandwich-type sensor including a hydrophilic and a hydrophobic membrane across which the sample stream is circulated —whence it is formally similar to some enzyme electrodes. Since the enzymatic conversion of the analyte must be as efficient as possible, deteetion (based on fibre optics) is performed after the donor and acceptor streams have passed through the sensor. Unlike the previous sensor (Fig. 5.9.A), this does not rely on the wall-jet approach in addition, each stream has its own outlet and the system includes two sensing microzones... [Pg.273]

Figure 5.13 — Irreversible-reusable flow-through sensor for the kinetic multidetermination of phosphate and silicate based on integrated sorption of a reaction product, reaction (/ situ reduction) and photometric detection. (A) Microsensor block (1) and components (2). (B) Continuous-flow configuration coupled on-line to the sensor. P peristaltic pumps SV switching valve W waste. For details, see text. (Reproduced from [39] with permission of the American Chemical Society). Figure 5.13 — Irreversible-reusable flow-through sensor for the kinetic multidetermination of phosphate and silicate based on integrated sorption of a reaction product, reaction (/ situ reduction) and photometric detection. (A) Microsensor block (1) and components (2). (B) Continuous-flow configuration coupled on-line to the sensor. P peristaltic pumps SV switching valve W waste. For details, see text. (Reproduced from [39] with permission of the American Chemical Society).
A sophisticated integrated flow-through PCR chip was fabricated (see Figure 9.11). Three reaction chambers, connection channels, thin-film resistive heaters, temperature sensors, and optical detectors are fabricated on a Si wafer. A thin... [Pg.309]

The flowing sensor medium as an integral part of remote detection naturally leads to the study of flow through porous media [40, 41]. In addition to carrying the... [Pg.153]

Cavity size (volume) Approx. 50 L Delivered power 1500 W Max. output power 1200 W Temperature control Outside IR remote sensor Immersed fiber-optic probe (optional) Pressure measurement Pneumatic pressure sensor (optional) Cooling system Air flow through cavity 100 m3 h1 External PC Optional not required as integrated key panel is standard equipment ... [Pg.41]


See other pages where Integrated flow-through sensors is mentioned: [Pg.55]    [Pg.55]    [Pg.10]    [Pg.32]    [Pg.53]    [Pg.57]    [Pg.59]    [Pg.92]    [Pg.171]    [Pg.203]    [Pg.223]    [Pg.231]    [Pg.263]    [Pg.272]    [Pg.277]    [Pg.278]    [Pg.283]    [Pg.284]    [Pg.286]    [Pg.287]    [Pg.287]    [Pg.291]    [Pg.305]    [Pg.307]    [Pg.310]    [Pg.480]    [Pg.1284]    [Pg.34]   


SEARCH



Flow sensors

Flow-through

Flow-through sensors for multideterminations based on integrated retention and detection

Flow-through sensors integrated detection-reaction

Flow-through sensors integrated detection-separation

Sensor integration

© 2024 chempedia.info