Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiator radicals, termination

Initiator radical termination by polymer alkyl radicals (P ) polymer oxy (PO ) and polymer peroxy (POO ) radicals. [Pg.390]

Tlie formation of initiator radicals is not the only process that determines the concentration of free radicals in a polymerization system. Polymer propagation itself does not change the radical concentration it merely changes one radical to another. Termination steps also occur, however, and these remove radicals from the system. We shall discuss combination and disproportionation reactions as modes of termination. [Pg.358]

Polymer propagation steps do not change the total radical concentration, so we recognize that the two opposing processes, initiation and termination, will eventually reach a point of balance. This condition is called the stationary state and is characterized by a constant concentration of free radicals. Under stationary-state conditions (subscript s) the rate of initiation equals the rate of termination. Using Eq. (6.2) for the rate of initiation (that is, two radicals produced per initiator molecule) and Eq. (6.14) for termination, we write... [Pg.362]

Initia.tors, The initiators most commonly used in emulsion polymerization are water soluble although partially soluble and oil-soluble initiators have also been used (57). Normally only one initiator type is used for a given polymerization. In some cases a finishing initiator is used (58). At high conversion the concentration of monomer in the aqueous phase is very low, leading to much radical—radical termination. An oil-soluble initiator makes its way more readily into the polymer particles, promoting conversion of monomer to polymer more effectively. [Pg.25]

The main reason that the decreases as the polymerization temperature increases is the increase in the initiation and termination reactions, which leads to a decrease in the kinetic chain length (Fig. 17). At low temperature, the main termination mechanism is polystyryl radical coupling, but as the temperature increases, radical disproportionation becomes increasingly important. Termination by coupling results in higher PS than any of the other termination modes. [Pg.514]

A further feature of anionic polymerisation is that, under very carefully controlled eonditions, it may be possible to produee a polymer sample which is virtually monodisperse, i.e. the molecules are all of the same size. This is in contrast to free-radical polymerisations which, because of the randomness of both chain initiation and termination, yield polymers with a wide molecular size distribution, i.e. they are said to be polydisperse. In order to produce monodisperse polymers it is necessary that the following requirements be met ... [Pg.36]

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

The departure of dependence of Rp on the concentration of CHP from 0.5 order might be ascribed to induction decomposition of ROOH type to form ROO- radical, which has very low activity to initiate monomer polymerization [40], but can combine with the propagation chain radical to form the primary radical termination. For the same reason, the order of concentration of TBH was also lower than 0.5 when the TBH-DMT system was used as the initiator in MMA bulk polymerization. But in the BPO-DMT initiation system as shown in Table... [Pg.232]

In contrast to /3-PCPY, ICPY did not initiate copolymerization of MMA with styrene [39] and AN with styrene [40]. However, it accelerated radical polymerization by increasing the rate of initiation in the former case and decreasing the rate of termination in the latter case. The studies on photocopolymerization of MMA with styrene in the presence of ICPY has also been reported [41], /8-PCPY also initiated radical copolymerization of 4-vinylpyridine with methyl methacrylate [42]. However, the ylide retarded the polymerization of N-vinylpyrrolidone, initiated by AIBN at 60°C in benzene [44]. (See also Table 2.)... [Pg.377]

In this early work, both initiation and termination were seen to lead to formation of structural units different from those that make up the bulk of the chain. However, the quantity of these groups, when expressed as a weight fraction of the total material, appeared insignificant. In a polymer of molecular weight 100,000 they represent only ca 0.2% of units Thus, polymers formed by radical polymerization came to be represented by, and their physical properties and chemistry interpreted in terms of, the simple formula 1. [Pg.2]

According to cq. 1, the term/should take into account all side reactions that lead to loss of initiator or initiator-derived radicals. These include cage reaction of the initiator-derived radicals (3.2.8), primary radical termination (3.2.9) and transfer to initiator (3.2.10). The relative importance of these processes depends on monomer concentration, medium viscosity and many other factors. Thus/is not a constant and typically decreases with conversion (see 3.3.1.1.3 and 3.3.2.1.3). [Pg.58]

If the rate of addition to monomer is low, primary radical termination may achieve greater importance. For example, in photoinitiation by the benzoin ether 12 both a fast initiating species (13, high k) and a slow initiating species (14, low... [Pg.61]

Primary radical termination is also of demonstrable significance when very high rates of initiation or very low monomer concentrations are employed. It should be noted that these conditions pertain in all polymerizations at high conversion and in starved feed processes. Some syntheses of telechelics are based on this process (Section 7.5.1). Reversible primary radical termination by combination with a persistent radical is the desired pathway in many forms of living radical polymerization (Section 9.3). [Pg.62]

The concentration of monomers in the aqueous phase is usually very low. This means that there is a greater chance that the initiator-derived radicals (I ) will undergo side reactions. Processes such as radical-radical reaction involving the initiator-derived and oligomeric species, primary radical termination, and transfer to initiator can be much more significant than in bulk, solution, or suspension polymerization and initiator efficiencies in emulsion polymerization are often very low. Initiation kinetics in emulsion polymerization are defined in terms of the entry coefficient (p) - a pseudo-first order rate coefficient for particle entry. [Pg.64]

Transfer to initiator can be a major complication in polymerizations initiated by diacyl peroxides. The importance of the process typically increases with monomer conversion and the consequent increase in the [initiator] [monomer] ratio.9 105160 162 In BPO initiated S polymerization, transfer to initiator may be lire major chain termination mechanism. For bulk S polymerization with 0.1 M BPO at 60 °C up to 75% of chains are terminated by transfer to initiator or primary radical termination (<75% conversion).7 A further consequence of the high incidence of chain transfer is that high conversion PS formed with BPO initiator tends to have a much narrower molecular weight distribution than that prepared with other initiators (e.g. AIBN) under similar conditions. [Pg.85]

The S-S linkage of disulfides and the C-S linkage of certain sulfides can undergo photoinduced homolysis. The low reactivity of the sulfur-centered radicals in addition or abstraction processes means that primary radical termination can be a complication. The disulfides may also be extremely susceptible to transfer to initiator (Ci for 88 is ca 0.5, Sections 6.2.2.2 and 9.3.2). However, these features are used to advantage when the disulfides are used as initiators in the synthesis of tel ec he lies295 or in living radical polymerizations. 96 The most common initiators in this context are the dithiuram disulfides (88) which are both thermal and photochemical initiators. The corresponding monosulfides [e.g. (89)J are thermally stable but can be used as photoinitiators. The chemistry of these initiators is discussed in more detail in Section 9.3.2. [Pg.103]

The rate constants for benzoyloxy and phenyl radicals adding to monomer are high (> KF M-1 s for S at 60 CC - Table 3.7). In these circumstances primary radical termination should have little importance under normal polymerization conditions. Some kinetic studies indicating substantial primary radical termination during S polymerization may need to be re-evaluated in this light.161 Secondary benzoate end groups in PS with BPO initiator may arise by head addition or transfer to initiator (Section 8.2.1). [Pg.127]

Two relatively new techniques, matrix assisted laser desorption ionization-lime of flight mass spectrometry (MALDI-TOF) and electrospray ionization (FS1), offer new possibilities for analysis of polymers with molecular weights in the tens of thousands. PS molecular weights as high as 1.5 million have been determined by MALDI-TOF. Recent reviews on the application of these techniques to synthetic polymers include those by Ilantoif54 and Nielen.555 The methods have been much used to provide evidence for initiation and termination mechanisms in various forms of living and controlled radical polymerization.550 Some examples of the application of MALDI-TOF and ESI in end group determination are provided in Table 3.12. The table is not intended to be a comprehensive survey. [Pg.143]

NMR methods can be applied to give quantitative determination of initiator-derived and other end groups and provide a wealth of information on the polymerization process. They provide a chemical probe of the detailed initiation mechanism and a greater understanding of polymer properties. The main advantage of NMR methods over alternative techniques for initiator residue detection is that NMR signals (in particular nC NMR) are extremely sensitive to the structural environment of the initiator residue. This means that functionality formed by tail addition, head addition, transfer to initiator or primary radical termination, and various initiator-derived byproducts can be distinguished. [Pg.146]

Many emulsion polymerizations can be described by so-called zero-one kinetics. These systems are characterized by particle sizes that are sufficiently small dial entry of a radical into a particle already containing a propagating radical always causes instantaneous termination. Thus, a particle may contain either zero or one propagating radical. The value of n will usually be less than 0.4. In these systems, radical-radical termination is by definition not rate determining. Rates of polymerization are determined by the rates or particle entry and exit rather than by rates of initiation and termination. The main mechanism for exit is thought to be chain transfer to monomer. It follows that radical-radical termination, when it occurs in the particle phase, will usually be between a short species (one that lias just entered) and a long species. [Pg.250]

Microemulsion and miniemulsion polymerization processes differ from emulsion polymerization in that the particle sizes are smaller (10-30 and 30-100 nm respectively vs 50-300 ran)77 and there is no discrete monomer droplet phase. All monomer is in solution or in the particle phase. Initiation usually takes place by the same process as conventional emulsion polymerization. As particle sizes reduce, the probability of particle entry is lowered and so is the probability of radical-radical termination. This knowledge has been used to advantage in designing living polymerizations based on reversible chain transfer (e.g. RAFT, Section 9.5.2)." 2... [Pg.250]

A substantial number of studies give information on kJkK for polymerizations of S (5.2.2.2.1) and MMA (5.2,2.2.2). There has been less work oil other systems. One of the main problems in assessing kjk lies with assessing the importance of other termination mechanisms (i.e. transfer to initiator, solvent, etc., primary radical termination). [Pg.258]

A third technique is to examine the products of primary radical termination in polymerizations carried out with high concentrations of initiator.176 177 Values of rtid/Ajc ratios in primary radical termination have been reported for a number of polymerizations carried out with A1BN (model for PM AN ) or AlBMe (model for PMM.V) initiation. [Pg.371]

The synthesis of telechelics by what Tobo]sky,9> termed dead-end polymerization is described in several review s.191,191 In dead-end polymerization very high initiator concentrations and (usually) high reaction temperatures are used. Conversion ceases before complete utilization of the monomer because of depletion of the initiator. Target molecular weights are low (1000-5000) and termination may be mainly by primary radical termination.. The first use of this methodology to prepare lelechelic polystyrene was reported by Guth and Heitz.177... [Pg.375]

Disulfide derivatives and hexasubstituted ethanes2,15 may also be used in this context to make cnd-functional polymers and block copolymers. The use of dilhiuram disulfides as thermal initiators was explored by Clouet, Nair and coworkers.206 Chain ends are formed by primary radical termination and by transfer to the dilhiuram disulfide. The chain ends formed are thermally stable under normal polymerization conditions. The use of similar compounds as photoin iferters, when some living characteristics may be achieved, is described in Section 9.3.2.1.1. [Pg.377]


See other pages where Initiator radicals, termination is mentioned: [Pg.87]    [Pg.87]    [Pg.400]    [Pg.278]    [Pg.436]    [Pg.431]    [Pg.513]    [Pg.524]    [Pg.434]    [Pg.684]    [Pg.376]    [Pg.376]    [Pg.482]    [Pg.736]    [Pg.3]    [Pg.61]    [Pg.62]    [Pg.103]    [Pg.116]    [Pg.145]    [Pg.233]    [Pg.259]    [Pg.260]    [Pg.376]    [Pg.377]    [Pg.415]    [Pg.416]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Cascade Reactions Initiated by Addition of O-Centered Radicals to Alkynes (Self-Terminating Radical Oxygenations)

Initiating radical

Initiation primary radical termination

Radical initiators

Radical termination

Radical-initiation

Radicals terminators

Termination Free-radical initiators, rates

Termination by initiator radicals

© 2024 chempedia.info