Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initial reaction phase

Polymerization Monomer (starting material) Initiator Reaction phase... [Pg.58]

However, only in the initial reaction phase the form of normal vibration can approximate the reaction coordinate whose typical feature is its correspondence with the imaginary vibration frequency (Sect. 1.3.3). A more rigorous approach based on the data on the force constants of a reacting molecule describes the reaction coordinate in terms of the so-called interaction displacement coordi-nates 0) [85],... [Pg.40]

When polymers or other water-soluble substances are present in the sample, it is advantageous to add a small amount of chloroform to the initial reaction mixture after the subsequent addition of water, a two-phase system results which may be titrated in the usual way to a starch end point or by observing the disappearance of the iodine colour in the chloroform layer. [Pg.808]

Equation 11 predominates in uncatalyzed vapor-phase decomposition and photo-chemicaHy initiated reactions. In catalytic reactions, and especially in solution, the nature of the reactants determines which reaction is predominant. [Pg.471]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Oxidation. The chlorine atom [22537-15-17-initiated, gas-phase oxidation of vinyl chloride yields 74% formyl chloride [2565-30-2] and 25% CO at high oxygen [7782-44-7], O2, to CI2 ratios it is unique among the chloro olefin oxidations because CO is a major initial product and because the reaction proceeds by a nonchain path at high O2/CI2 ratios. The rate of the gas-phase reaction of chlorine atoms with vinyl chloride has been measured (39). [Pg.414]

The reactions in the regulated-set cements containing Cjj A3CF2 (note mixed notation) as a principal phase resemble those in ordinary Portiand cements. Initial reaction rates are controlled by ettringite formation. Setting occurs with formation of the monosulfate, along with some transitory lower-limed calcium aluminate hydrates that convert to the monosulfate within a few hours. [Pg.288]

The function of emulsifier in the emulsion polymerization process may be summarized as follows [45] (1) the insolubilized part of the monomer is dispersed and stabilized within the water phase in the form of fine droplets, (2) a part of monomer is taken into the micel structure by solubilization, (3) the forming latex particles are protected from the coagulation by the adsorption of monomer onto the surface of the particles, (4) the emulsifier makes it easier the solubilize the oligomeric chains within the micelles, (5) the emulsifier catalyzes the initiation reaction, and (6) it may act as a transfer agent or retarder leading to chemical binding of emulsifier molecules to the polymer. [Pg.196]

Solution The initial liquid-phase concentration of oxygen is 0.219mol/m as in Example 11.1. The final oxygen concentration will be 1.05 mol/m. The phase balances. Equations (11.11) and (11.12), govern the dynamic response. The flow and reaction terms are dropped from the liquid phase balance to give... [Pg.390]

Non-linearity during progession of enzyme reaction or an initial lag phase which is undetected and may result in significant error. [Pg.185]

For polychlorinated biphenyls (PCBs), rate constants were highly dependent on the number of chlorine atoms, and calculated atmospheric lifetimes varied from 2 d for 3-chlorobiphenyl to 34 d for 236-25 pentachlorobiphenyl (Anderson and Hites 1996). It was estimated that loss by hydroxy-lation in the atmosphere was a primary process for the removal of PCBs from the environment. It was later shown that the products were chlorinated benzoic acids produced by initial reaction with a hydroxyl radical at the 1-position followed by transannular dioxygenation at the 2- and 5-positions followed by ring fission (Brubaker and Hites 1998). Reactions of hydroxyl radicals with polychlorinated dibenzo[l,4]dioxins and dibenzofurans also play an important role for their removal from the atmosphere (Brubaker and Hites 1997). The gas phase and the particulate phase are in equilibrium, and the results show that gas-phase reactions with hydroxyl radicals are important for the... [Pg.16]

Considerable attention has been directed to the formation of nitroarenes that may be formed by several mechanisms (a) initial reaction with hydroxyl radicals followed by reactions with nitrate radicals or NO2 and (b) direct reaction with nitrate radicals. The first is important for arenes in the troposphere, whereas the second is a thermal reaction that occurs during combustion of arenes. The kinetics of formation of nitroarenes by gas-phase reaction with N2O5 has been examined for naphthalene (Pitts et al. 1985a) and methylnaphthalenes (Zielinska et al. 1989) biphenyl (Atkinson et al. 1987b,c) acephenanthrylene (Zielinska et al. 1988) and for adsorbed pyrene (Pitts et al. 1985b). Both... [Pg.20]

The findings here surest that, after an initial slow phase corresponding to the antioxidant capacity of the LDL, hydroperoxides can interact with haemoglobin in a similar manner to hydrogen peroxide, forming ferryl haemoglobin, which is then rapidly reduced to mixtures consisting mainly of oxy- and met- forms, possibly by the synproportionation reaction, as proposed in the studies... [Pg.47]

B) Data from (A) highlighting the early time points that represent the initial velocity phase of the reaction. [Pg.36]

Figure 4.3 Product progress curves for an enzyme-catalyzed reaction in the absence (closed circles) and presence open circles) of an inhibitor at a concentration that reduces the reaction rate by 50%. Inset The initial velocity phase of these progress curves. Figure 4.3 Product progress curves for an enzyme-catalyzed reaction in the absence (closed circles) and presence open circles) of an inhibitor at a concentration that reduces the reaction rate by 50%. Inset The initial velocity phase of these progress curves.
Figure 4.4 Calculated % inhibition as a function of reaction time from die progress curves shown in Figure 4.3. Note that as die reaction continues past die initial velocity phase (shown in die inset), the apparent % inhibition is dramatically diminished. Figure 4.4 Calculated % inhibition as a function of reaction time from die progress curves shown in Figure 4.3. Note that as die reaction continues past die initial velocity phase (shown in die inset), the apparent % inhibition is dramatically diminished.
The initial velocity of reaction is defined by the slope of a linear plot of product (or substrate) concentration as a function of time (Chapter 2), and we have just discussed the importance of measuring enzymatic activity during this initial velocity phase of the reaction. The best measure of initial velocity is thus obtained by continuous measurement of product formation or substrate disappearance with time over a convenient portion of the intial velocity phase. However, continuous monitoring of assay signal is not always practical. Copeland (2000) has described three types of assay readouts for measuring reaction velocity continuous assays, discontinuous... [Pg.88]

The underlying assumption in any end-point assay is that the time point measured is well within the initial velocity phase of the reaction, so that product formation or substrate disappearance is a linear function of time. If this is true, then the... [Pg.89]

Deviations from linearity at high enzyme concentrations can also have multiple origins. The most common reason for an apparent deviation from linearity here is that the high enzyme concentrations speed up the reaction so much that one inadvertently moves out of the initial velocity phase of the reaction, and into a phase of... [Pg.91]


See other pages where Initial reaction phase is mentioned: [Pg.261]    [Pg.289]    [Pg.516]    [Pg.48]    [Pg.247]    [Pg.261]    [Pg.289]    [Pg.455]    [Pg.222]    [Pg.58]    [Pg.72]    [Pg.3929]    [Pg.568]    [Pg.261]    [Pg.289]    [Pg.516]    [Pg.48]    [Pg.247]    [Pg.261]    [Pg.289]    [Pg.455]    [Pg.222]    [Pg.58]    [Pg.72]    [Pg.3929]    [Pg.568]    [Pg.256]    [Pg.433]    [Pg.289]    [Pg.41]    [Pg.43]    [Pg.251]    [Pg.96]    [Pg.179]    [Pg.163]    [Pg.322]    [Pg.418]    [Pg.224]    [Pg.682]    [Pg.35]    [Pg.87]    [Pg.88]    [Pg.90]   


SEARCH



Initial Phase of the Maillard Reaction

Initial reaction phase Basics)

Initialization phase

Initiation phase

Initiation reaction

Reaction initiated

© 2024 chempedia.info