Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy, electromagnetic

Infrared radiation, electromagnetic spectrum and, 419, 422 energy of. 422 frequencies of, 422 wavelengths of, 422 Infrared spectroscopy, 422-431 acid anhydrides, 822-823 acid chlorides, 822-823 alcohols. 428, 632-633 aldehydes, 428. 730-731 alkanes, 426-427 alkenes, 427 alkynes, 427 amides. 822-823 amines, 428, 952 ammonium salts, 952-953 aromatic compound, 427-428, 534 bond stretching in, 422... [Pg.1301]

In materials investigations surface-sensitive techniques are of special interest. The major contribution of infrared spectroscopy to this field is internal reflection spectroscopy (IRS), often called the "attenuated total reflection" (ATR) technique. To describe theory and principle, electromagnetic wave theory must be apphed [33]. [Pg.535]

Most of what we know about the structure of atoms and molecules has been obtained by studying the interaction of electromagnetic radiation with matter. Line spectra reveal the existence of shells of different energy where electrons are held in atoms. From the study of molecules by means of infrared spectroscopy we obtain information about vibrational and rotational states of molecules. The types of bonds present, the geometry of the molecule, and even bond lengths may be determined in specific cases. The spectroscopic technique known as photoelectron spectroscopy (PES) has been of enormous importance in determining how electrons are bound in molecules. This technique provides direct information on the energies of molecular orbitals in molecules. [Pg.83]

Near-infrared Spectroscopy. Near-infrared spectroscopy (NIRS) uses that part of the electromagnetic spectrum between the visible and the infrared. This region has the advantage that the instrumentation is nearest to visible instrumentation. Signals in the near-infrared come not from the fundamental vibrations of molecules but from overtones. As... [Pg.21]

Infrared spectroscopy an analytical technique that quantifies the vibration (stretching and bending) that occurs when a molecule absorbs (heat) energy in the infrared region of the electromagnetic spectrum. [Pg.332]

Infrared spectroscopy has proven to be a very informative and powerful technique for the characterization of zeolitic materials. Most infrared spectrometers measure the absorption of radiation in the mid-infrared region of the electromagnetic spectrum (4000-400 cm or 2.5-25 xm). In this region of the spectrum, absorption is due to various vibrational modes in the sample. Analysis of these vibrational absorption bands provides information about the chemical species present. This includes information about the structure of the zeolite as well as other functional... [Pg.111]

Other spectral regions are also important because the detection and quantification of small concentrations of labile molecular, free radical, and atomic species of tropospheric interest both in laboratory studies and in ambient air are based on a variety of spectroscopic techniques that cover a wide range of the electromagnetic spectrum. For example, the relevant region for infrared spectroscopy of stable molecules is generally from 500 to 4000 cm-1 (20-2.5 /Am), whereas the detection of atoms and free radicals by resonance fluorescence employs radiation down to 121.6 nm, the Lyman a line of the H atom. [Pg.53]

Most polymers absorb electromagnetic radiation at characteristic wavelengths in the infrared region. Hence infrared spectroscopy is used for the... [Pg.54]

Specialists and advanced graduate students concerned with the basic principles or applications of the infrared spectroscopy of dense fluids, or with the fundamental interactions of supermolecular complexes with electromagnetic radiation, will find this a valuable text and general reference. [Pg.437]

In addition to describing the conformation of the hydrocarbon chains for amphiphilic molecules at the A/W interface, external reflectance infrared spectroscopy is also capable of describing the orientation of the acyl chains in these monolayers as a function of the monolayer surface pressure. The analysis of the orientation distribution for an infrared dipole moment at the A/W interface proceeds based on classical electromagnetic theory of stratified layers (2). In particular, when parallel polarized radiation interacts with the A/W interface, the resultant standing electric field has contributions from both the z component of the p-polarized radiation normal to the interface, as well as the x component of the p-polarized radiation in the plane of the interface. The E field distribution for these two... [Pg.198]

Today, organic chemists rely on an array of very powerful instruments that enable them to identify compounds in much less time. With use of these instruments, it is often possible to determine the structure of an unknown compound in less than an hour. Three of the most powerful techniques are presented in this and the following chapters. They are infrared spectroscopy and two related techniques proton and carbon-13 nuclear magnetic resonance spectroscopy. Spectroscopy is the study of the interaction of electromagnetic radiation (light) with molecules. [Pg.500]

This chapter begins with a discussion of electromagnetic radiation and spectroscopy in general. Then infrared spectroscopy is presented. We will learn how the functional groups that are present in a compound can be identified by examination of its infrared spectrum. In the next chapter, we will see how nuclear magnetic resonance spectroscopy complements infrared spectroscopy by pro-... [Pg.500]


See other pages where Infrared spectroscopy, electromagnetic is mentioned: [Pg.1136]    [Pg.1143]    [Pg.421]    [Pg.421]    [Pg.433]    [Pg.170]    [Pg.178]    [Pg.6]    [Pg.1136]    [Pg.1143]    [Pg.59]    [Pg.534]    [Pg.289]    [Pg.338]    [Pg.288]    [Pg.267]    [Pg.62]    [Pg.34]    [Pg.364]    [Pg.45]    [Pg.95]    [Pg.1136]    [Pg.1143]    [Pg.271]    [Pg.198]    [Pg.366]    [Pg.205]    [Pg.349]    [Pg.101]    [Pg.584]    [Pg.628]    [Pg.53]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Absorption of electromagnetic radiation in infrared spectroscopy

Electromagnet infrared

Electromagnetic infrared

Electromagnetic radiation infrared spectroscopy

Electromagnetic spectroscopy

Electromagnetic spectrum infrared spectroscopy

© 2024 chempedia.info