Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared coupling

Infrared coupling to SFC has further developed into the use of two or more complementary detectors, such as cSFC-FTTR-MS [382] and cSFC-UV-FTIR-FID. Nevertheless, SFC-FTIR appears not to have developed the same importance as SFC-MS (cf. Section 13.2.2). [Pg.478]

Liquid Chromatography-Fourier-transform Infrared Couplings... [Pg.490]

GC-MS has already been mentioned as the premier method for qualitative analysis (see Chapter 10). A complementary identification technique is Fourier Transform infrared coupled to gas chromatography (GC-FTIR). [Pg.175]

Liquid Chromatography-Fourier Transform Infrared Coupling 44... [Pg.33]

Infrared and Raman spectroscopy each probe vibrational motion, but respond to a different manifestation of it. Infrared spectroscopy is sensitive to a change in the dipole moment as a function of the vibrational motion, whereas Raman spectroscopy probes the change in polarizability as the molecule undergoes vibrations. Resonance Raman spectroscopy also couples to excited electronic states, and can yield fiirtlier infomiation regarding the identity of the vibration. Raman and IR spectroscopy are often complementary, both in the type of systems tliat can be studied, as well as the infomiation obtained. [Pg.1150]

Wang C, Mohney B K, Williams R, Hupp J T and Walker G C 1998 Solvent control of vibronic coupling upon intervalence charge transfer excitation of (NC)gFeCNRu(NH3)g- as revealed by resonance Raman and near-infrared absorption spectroscopies J. Am. Chem. Soc. 120 5848-9... [Pg.2995]

Specinfo, from Chemical Concepts, is a factual database information system for spectroscopic data with more than 660000 digital spectra of 150000 associated structures [24], The database covers nuclear magnetic resonance spectra ( H-, C-, N-, O-, F-, P-NMR), infrared spectra (IR), and mass spectra (MS). In addition, experimental conditions (instrument, solvent, temperature), coupling constants, relaxation time, and bibliographic data are included. The data is cross-linked to CAS Registry, Beilstein, and NUMERIGUIDE. [Pg.258]

Experimental confirmation of the metal-nitrogen coordination of thiazole complexes was recently given by Pannell et al. (472), who studied the Cr(0), Mo(0), and W(0) pentacarbonyl complexes of thiazole (Th)M(CO)5. The infrared spectra are quite similar to those of the pyridine analogs the H-NMR resonance associated with 2- and 4-protons are sharper and possess fine structure, in contrast to the broad, featureless resonances of free thiazole ligands. This is expected since removal of electron density from nitrogen upon coordination reduces the N quad-rupole coupling constant that is responsible for the line broadening of the a protons. [Pg.129]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

If was nof until fhe developmenf of Fourier fransform infrared (FTIR) specfromefers (see Section 3.3.3.2) fhaf fhe possibilify of using an infrared laser routinely was opened up. The intensify advanfage of an infrared interferometer, wifh which a single specfrum can be obfained very rapidly and fhen many specfra co-added, coupled wifh fhe developmenf of more sensitive Ge and InGaAs semiconductor infrared defectors, more fhan compensate for fhe loss of scatfering intensify in fhe infrared region. [Pg.123]

Reference methods for criteria (19) and hazardous (20) poUutants estabHshed by the US EPA include sulfur dioxide [7446-09-5] by the West-Gaeke method carbon monoxide [630-08-0] by nondispersive infrared analysis ozone [10028-15-6] and nitrogen dioxide [10102-44-0] by chemiluminescence (qv) and hydrocarbons by gas chromatography coupled with flame-ionization detection. Gas chromatography coupled with a suitable detector can also be used to measure ambient concentrations of vinyl chloride monomer [75-01-4], halogenated hydrocarbons and aromatics, and polyacrylonitrile [25014-41-9] (21-22) (see Chromatography Trace and residue analysis). [Pg.384]

The relative abundance of neutral SiH and H2 species have been measured as a function of power, pressure, flow rate, and dilution. For low power levels, eg, 5 W, up to 50% of the SiH gas is dissociated and the percentage increases to 80% for a power of 50 W. The decomposition of SiH gas proceeds more readily with lower flow rates. These observations, coupled with infrared (ir) measurements performed on the films, suggest that deposition under conditions in which the silane gas is not entirely decomposed leads to a majority of SiH units, whereas those deposited under conditions in which silane is strongly dissociated contain a majority of dihydride units leading to a deterioration of the semiconductor. Also, when the dwell time of SiH in the plasma region increases, the resultant film exhibits a pronounced peak at 2090 cm from the ir spectra corresponding to S1H2 inclusion. [Pg.358]

Other spectroscopic methods such as infrared (ir), and nuclear magnetic resonance (nmr), circular dichroism (cd), and mass spectrometry (ms) are invaluable tools for identification and stmcture elucidation. Nmr spectroscopy allows for geometric assignment of the carbon—carbon double bonds, as well as relative stereochemistry of ring substituents. These spectroscopic methods coupled with traditional chemical derivatization techniques provide the framework by which new carotenoids are identified and characterized (16,17). [Pg.97]

Mounting electrodes in a bioreactor is costly, and there is an additional contamination risk for sensitive cell cultures. Some other sensors of prac ticai importance are those for dissolved oxygen and for dissolved carbon dioxide. The analysis of gas exiting from a bioreactor with an infrared unit that detects carbon dioxide or a paramagnetic unit that detects oxygen (after carbon dioxide removal) has been replaced by mass spec trophotometry. Gas chromatographic procedures coupled with a mass spectrophotometer will detect 1 the volatile components. [Pg.2148]

The most common detectors in HPLC are ultraviolet, fluorescence, electrochemical detector and diffractometer. However, despite all improvements of these techniques it seems necessary to have a more selectivity and sensitivity detector for the purposes of the medical analysis. It should be therefore improvements to couple analytical techniques like infrared IR, MS, nuclear magnetic resonance (NMR), inductively coupled plasma-MS (ICP-MS) or biospecific detectors to the LC-system and many efforts have been made in this field. [Pg.342]

For twice-distilled material infrared (liquid film) cm." 1745 strong, 1565 strong, 1430 medium strong proton magnetic resonance (chloro-form-d) (number of protons, multiplicity, coupling constant J in Hz) 3.14-3.45 (1, multiplet), 3.76 (3, singlet), 3,86 (3, singlet), 5.6 (1, doublet of doublets, J = 6 and 8). [Pg.62]


See other pages where Infrared coupling is mentioned: [Pg.425]    [Pg.212]    [Pg.303]    [Pg.425]    [Pg.212]    [Pg.303]    [Pg.1063]    [Pg.1075]    [Pg.1243]    [Pg.2444]    [Pg.176]    [Pg.288]    [Pg.138]    [Pg.155]    [Pg.325]    [Pg.250]    [Pg.194]    [Pg.394]    [Pg.335]    [Pg.84]    [Pg.420]    [Pg.421]    [Pg.422]    [Pg.424]    [Pg.428]    [Pg.434]    [Pg.110]    [Pg.4]    [Pg.106]    [Pg.389]    [Pg.426]   


SEARCH



Charge coupled devices infrared sensitive

Coupled infrared vibrations as a polymer structure

Fourier transform infrared inductively coupled plasma-atomic

Infrared mechanical coupling

Ultraviolet infrared coupling

Visible ultraviolet infrared coupling

© 2024 chempedia.info