Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared 100% control

Deii Survival days Coopwifld dfettivatws j is measured by day survival of T cnia-irtVctf d cab in seated cultures vs. infrared controls... [Pg.120]

The absence of any W(CO)6, due to decomposition, should be checked by infrared control in the carbonyl region of Nujol mull (sharp band at about 1873 cm-1). It can be removed by prolonged vacuum treatment. [Pg.31]

Yang,)., Shen, D., Zhou, L, Li, W., Li, X, Yao, C., Wang, R., El-Toni, A.M., Zhang, F., and Zhao, D. (2013) Spatially confined fabrication of core-shell gold nanocages mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater., 25 (15), 3030-3037. [Pg.1343]

Experimental access to the probabilities P(E ,E) for energy transfer in large molecules usually involves teclmiques providing just the first moment of this distribution, i.e. the average energy (AE) transferred in a collision. Such methods include UV absorption, infrared fluorescence and related spectroscopic teclmiques [11. 28. 71. 72, 73 and 74]. More advanced teclmiques, such as kinetically controlled selective ionization (KCSI [74]) have also provided infonnation on higher moments of P(E ,E), such as ((AE) ). [Pg.1055]

Wang C, Mohney B K, Williams R, Hupp J T and Walker G C 1998 Solvent control of vibronic coupling upon intervalence charge transfer excitation of (NC)gFeCNRu(NH3)g- as revealed by resonance Raman and near-infrared absorption spectroscopies J. Am. Chem. Soc. 120 5848-9... [Pg.2995]

Diffraction gratings may be made by a holographic process, but blaze characteristics cannot be controlled and their efficiency is low in the infrared. They are mostly used for low-order work in the visible and near-ultraviolet. [Pg.47]

Chemical Gas Detection. Spectral identification of gases in industrial processing and atmospheric contamination is becoming an important tool for process control and monitoring of air quaUty. The present optical method uses the ftir (Fourier transform infrared) interference spectrometer having high resolution (<1 cm ) capabiUty and excellent sensitivity (few ppb) with the use of cooled MCT (mercury—cadmium—teUuride) (2) detectors. [Pg.295]

Characterization. In many cases, ftir is a timely and cost-effective method to identify and quantify certain functionaHties in a resin molecule. Based on developed correlations, ftir is routinely used as an efficient method for the analysis of resin aromaticity, olefinic content, and other key functional properties. Near infrared spectroscopy is also quickly becoming a useful tool for on-line process and property control. [Pg.350]

The preferred quantitative deterrnination of traces of acetylene is gas chromatography, which permits an accurate analysis of quantities much less than 1 ppm. This procedure has been highly developed for air poUution studies (88) (see Airpollution control methods). Other physical methods, such as infrared and mass spectroscopy, have been widely used to determine acetylene in various mixtures. [Pg.377]

Process monitoring, both in the laboratory and on the production line, is an important appHcation of infrared spectrometry (see Process control). [Pg.201]

An even wider range of wavelength, toward the infrared, can be covered with quantum well lasers. In the Al Ga As system, compressively strained wells of Ga In As are used. This ternary system is indicated in Figure 6 by the line joining GaAs and In As. In most cases the A1 fraction is quite small, X < 0.2. Such wells are under compressive strain and their thickness must be carefully controlled in order not to exceed the critical layer thickness. Lasers prepared in this way are characterized by unusually low threshold current density, as low as ca 50 A/cm (l )-... [Pg.131]

AlGaAs quantum well infrared photodetector (QWIP) focal planes have achieved sufficient sensitivity out to 10-p.m wavelength to result in scene temperature sensitivity of ca 0.2°C when the focal plane is cooled to 77 K. Spectral sensitivity is shown in Eigure 9c and array information is given in Table 1. The supedattice, a newer tool for achieving controlled activation energy, should present many alternative infrared detection techniques. [Pg.436]

Infrared absorption studies have shown that correlates with an absorption at 3 p.m associated with an OH-stretching frequency (20). Indeed, infrared absorption provides a useful tool for evaluation in rapid production quaUty control. Infrared and other studies show that degradation is caused by proton inclusion in the grown quartz. [Pg.520]

Uses. Tballium compounds have limited use in industrial appHcations. The use of thaHous sulfate in rodenticides and insecticides has been replaced by other compounds less harmful to animals (see Insect control technology Pesticides). Tb allium sulfide has been used in photoelectric cells (see Photovoltaic cells). A thallium bromide—thallium iodide mixture is used to transmit infrared radiation for signal systems. ThaHous oxide is used in the manufacture of glass (qv) that has a high coefficient of refraction. Tb allium formate—malonate aqueous solutions (Cletici s solution) have been used in mineral separations. Many thallium compounds have been used as reagents in organic synthesis in researchlaboratoti.es. [Pg.470]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

Water Transport. Two methods of measuring water-vapor transmission rates (WVTR) ate commonly used. The newer method uses a Permatran-W (Modem Controls, Inc.). In this method a film sample is clamped over a saturated salt solution, which generates the desired humidity. Dry air sweeps past the other side of the film and past an infrared detector, which measures the water concentration in the gas. For a caUbrated flow rate of air, the rate of water addition can be calculated from the observed concentration in the sweep gas. From the steady-state rate, the WVTR can be calculated. In principle, the diffusion coefficient could be deterrnined by the method outlined in the previous section. However, only the steady-state region of the response is serviceable. Many different salt solutions can be used to make measurements at selected humidity differences however, in practice,... [Pg.500]

Carbon Dioxide Transport. Measuring the permeation of carbon dioxide occurs far less often than measuring the permeation of oxygen or water. A variety of methods ate used however, the simplest method uses the Permatran-C instmment (Modem Controls, Inc.). In this method, air is circulated past a test film in a loop that includes an infrared detector. Carbon dioxide is appHed to the other side of the film. AH the carbon dioxide that permeates through the film is captured in the loop. As the experiment progresses, the carbon dioxide concentration increases. First, there is a transient period before the steady-state rate is achieved. The steady-state rate is achieved when the concentration of carbon dioxide increases at a constant rate. This rate is used to calculate the permeabiUty. Figure 18 shows how the diffusion coefficient can be deterrnined in this type of experiment. The time lag is substituted into equation 21. The solubiUty coefficient can be calculated with equation 2. [Pg.500]


See other pages where Infrared 100% control is mentioned: [Pg.46]    [Pg.338]    [Pg.1343]    [Pg.269]    [Pg.1264]    [Pg.1264]    [Pg.1958]    [Pg.2788]    [Pg.3001]    [Pg.191]    [Pg.135]    [Pg.412]    [Pg.112]    [Pg.260]    [Pg.290]    [Pg.295]    [Pg.50]    [Pg.254]    [Pg.332]    [Pg.201]    [Pg.126]    [Pg.424]    [Pg.436]    [Pg.436]    [Pg.37]    [Pg.142]    [Pg.434]    [Pg.31]    [Pg.369]    [Pg.380]    [Pg.11]    [Pg.208]    [Pg.455]   
See also in sourсe #XX -- [ Pg.266 , Pg.268 , Pg.269 , Pg.270 ]




SEARCH



© 2024 chempedia.info