Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inflexion point position

The position of the inflexion points at higher values of [Pg.224]

If we coimect the positions of the same inflexion points over various values of straight lines, we create an interval tree of scales, as shown in Fig. 7 for the signals of Fig. 5. The interval tree allows us to generate two very important pieces of information about the trends of a measured variable ... [Pg.224]

A wavelet defined as above is called a first-order wavelet. From Eq. (21) we conclude that the extrema points of the first-order wavelet transform provide the position of the inflexion points of the scaled signal at any level of scale. Similarly, if i/ (f) = d it)/dt, then the zero crossings of the wavelet transform correspond to the inflexion points of the original signal smoothed (i.e., scaled) by the scaling function, tj/it) (Mallat, 1991). [Pg.240]

The lower part of Fig. 6.5 shows the electric signal obtained with the aid of the described method. An exact differentation of the upper curve is obtained by the selective amplification of the fundamental frequency of the modulation. In fact, at the inflexion point of the upper curve, a sinusoidal variation of the azimuth causes a practically sinusoidal variation of intensity. At any other place, the variation of the intensity can only be described by a Fourier series with the same basic frequency. The higher frequencies are not detected electronically. The amplitude ratio AIJA

absolute value of the curve. This is the reason, why sharp edges are observed in the lower curve at the extinction positions. This forms a welcome increase of the accuracy of the determination. The advantages of this method clearly follow from Fig. 6.514. [Pg.302]

Both the values in this table and the position of the inflexion point on high-resolution isotherms strongly depend of probe molecule and adsorption temperature. [Pg.453]

Morpholinopropiophenone proved to be a more suitable system (Carsky et al., 1964). The increase in the more positive phenyl vinyl ketone wave (Fig. 12) at pH < 7 5 followed first-order kinetics. The logarithm of the wave-height was a linear function of time for conversions below 80%. The first-order rate constant, determined from slopes of such plots, was measured at various pH-values. The plot of the rate constants against pH possesses a form of a dissociation curve (Fig. 11) with an inflexion point corresponding to p K mb =... [Pg.19]

When the unoccupied states are itinerant, a marked increase in the variation of photoabsorption coefficient forming a discontinuity appears at an energy just sufficient for the transfer of an electron to the first empty levels. The inflexion point of the discontinuity corresponds to the position of the Fermi level in a metal or the bottom of the conduction band in a semi-conductor or an insulator. The ratio between the photoabsorption coefficient on either side of the discontinuity is called the absorption jump. If the density of states is uniform, the shape of the discontinuity is that of the arctangent curve. When a high density of unoccupied states of the appropriate symmetry is situated near the Fermi level, an absorption maximum can be expected. [Pg.27]

In the case of localized empty states one or more absorption lines are observed in the variation of the photoabsorption coefficient. Beyond this an absorption jump is generally observed it corresponds to the transitions toward hybridized continuum states of positive energy and its inflexion point gives the ionisation energy. [Pg.27]

In Fig. 6 the variation of the emitted intensity near the Mjy ionization limit is plotted for a voltage difference equal to twice the threshold. The shape of the spectrum is the same whatever is the voltage. An emission is observed below the absorption peak its maximum coincides approximately with the position of the absorption curve inflexion point and its intensity varies with the accelerating voltage in the same way as does atomic line. This emission gives the occupied 5/ distribution convoluted with the Lorentz distribution of the 3 d j2 level. [Pg.36]

On the other hand, the a—Pu My photoabsorption is almost similar in form to a transition metal p photoabsorption. The jump denotes the presence of transitions to / states hybridized with states belonging to a continuum. This is probably also true for the Sj and 83 structures. One resonance line has been observed in the My emission spectrum in coincidence with the R2 peak and none in the M,y spectrum. It seems that in a—Pu, only a part of empty 5/states are locahzed there are states toward which a 3 5 2 electron can be excited. All the others are 5/—6cf hybridized states these are, in particular, states toward which a 3 d- i electron has a large probability of being transferred. Thus, the absorption curves present a jump just at the Fermi level and their inflexion point gives the position of this level. [Pg.39]

For bands with similar widths, it is not possible to take advantage of the discriminative power of the derivatives. One can then use the zero crossing method. To the maximum or minimum of each band, there is a correspondence with a zero derivative value the concentration value of the compounds do not matter. To the inflexion point of the usual spectrum, the second derivative is zero, etc. To these particular points, the value of the derivative is due to the only contribution of the second compound and, in this way, the interference of the first one may be removed. This methodology was used at the very beginning of derivative spectroscopy and was mainly applied to those compounds that had close spectra. One has to note, however, that this methodology requires the use of very reproducible wavelength-positioning spectrophotometers. [Pg.40]

It will be seen that the heat effect remains positive throughout the entire process, but becomes very small beyond about a CO 1. Comparing this with Fig. 23a and 23b, it appears that this corresponds to the value of a, where the isotherm begins to deviate from the Langmuir type and where it has its inflexion point. From thereon, the smaller heat effect, due to capillary condensation, begins. The dotted lines in Fig. 24 correspond to the heat effect calculated by HiiCKEL for such a process on behalf of various assumptions. [Pg.527]

The restriction of positive B is due to the fact that if B is negative, eq. (2.3-40) does not always give a real solution. With the restriction on B as shown in eq. (2.3-45), the minimum reduced pressure at which the inflexion point occurs is (by putting B to zero in eq. 2.3-44) ... [Pg.33]

For the inflexion point to exist in the physical range (that is must be positive), the lower limit on C will be... [Pg.90]

In Figure 4 the equilibrium concentration of dodecyl sulfate ions is plotted against the total surfactant concentration for the PEO-NaDS system in the presence of 0.1 M NaN03. While the PEO-NaDS complex formation starts around 1 mmol.kg, the micelles appear in a detectable amount only if the free surfactant ion concentration exceeds the value of 1.3 mmol.kg" (see the 0 PEO curve). The upper limit of the free DS concentration is the value of Cjyj = 1.44 mmoLkg". In the presence of the polymer, the equilibrium DS concentration shows two inflexion points, the position of which is shifted to higher surfactant concentration with increasing polymer content. From the analysis of Equation 5 at constant counter-ion activity, it follows that... [Pg.392]

Note. Occasionally a wave appears for some other compound in the urine at a more positive potential than that for the dimethylglycylhydrazone of the 17-ketosteroids. This compound can be removed by permanganate oxidation, but the procedure is lengthy and a measurement of the hydrazone wave from the inflexion point between the two waves is advocated. An accuracy of within 5 per cent can be obtained by this empirical method of measurement. [Pg.195]

Let us refer to Fig. 8, in which the deterministic potential is once again drawn as a function of the composition variable X in the thermal explosion problem. Suppose that we start with exactly N particles at t = 0, and that N is well on the right of the position of the inflexion point of U(X), in a region in which the potential is rather flat. As mentioned already in the previous Section, for t > 0 the probability function will develop a width, and its peak will begin to travel to the left slowly. [Pg.180]

FIG. 3 The effective charge, Z, is determined by the effective mass, m, of electrons available for interaction which must be within kT of the Fermi energy. The effective mass is proportional to the second derivative in the energy ( )-vs.-momentum k) relationship, a quantum mechanical effect near E=Ef. Above the inflexion point m is negative, below it m is positive. [Pg.831]

If the pH of the titrand is monitored throughout a titration, a graph.of pH against amount of titrant added may be constructed. The characteristics of this curve are important in the selection of suitable titration conditions and indicators. Of particular importance are the position of the point of inflexion representing the neutralization point, the slope of the curve in the end point region, and the size of the end point break . The influences of concentration and the strength of the acid or base are summarized in figures 5.1, 5.2 and 5.3. [Pg.190]

Determining the nature of the stationary point is done by looking at the value of 2- if it is negative the stationary point is a maximum whereas if it is positive the stationary point is a minimum. If the second derivative is zero the stationary point may be a maximum, a minumum, or a point of inflexion as shown in Fig. 37.1. Its nature in this case can only be determined by considering the sign of the gradient each side of the stationary point. [Pg.134]

The differential form of the Gaussian function has already been discussed and is sigmoid in shape with a positive maximum at the first point of inflexion of the Gaussian curve and a minimum at the second point of inflexion. If the peaks are completely resolved in the normal chromatogram, then they can be clearly and unambiguously identifiable in their differential form. If, however, the peaks are not completely resolved, then the differential curve of the unresolved peaks are confused and extremely difficult to interpret and for this reason the differential form of the Gaussian function is rarely used. Nonetheless, if the elution profile of the solutes are not Gaussian in form, the differential detector can be extremely useful. [Pg.453]


See other pages where Inflexion point position is mentioned: [Pg.166]    [Pg.167]    [Pg.119]    [Pg.122]    [Pg.286]    [Pg.3727]    [Pg.60]    [Pg.61]    [Pg.114]    [Pg.42]    [Pg.30]    [Pg.86]    [Pg.610]    [Pg.49]    [Pg.20]    [Pg.163]    [Pg.127]    [Pg.77]    [Pg.231]    [Pg.598]    [Pg.401]    [Pg.197]    [Pg.525]    [Pg.197]    [Pg.298]    [Pg.405]    [Pg.17]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Inflexion

Inflexion point

Point position

© 2024 chempedia.info