Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial stirred tank

A typical value for A in an industrial stirred tank is a few millimeters (19). [Pg.146]

A New Chemical Method for the Study of Local Micromixing Conditions in Industrial Stirred Tanks... [Pg.545]

Results described so far suggest that the snapshot approach can be used to make a priori predictions of the complex flow generated in stirred vessels for impellers of any shape. A number of industrial stirred tank reactors make use of two or more impellers mounted on the same shaft. When more than one impeller is used, the flow complexity is greatly increased, especially when there is interaction between the flow generated by the two impellers. The extent of interaction depends on relative distances between the two impellers (and clearance from the vessel bottom). In order to examine whether the computational snapshot approach can be used to simulate... [Pg.304]

Barth OLE ).P., David R., Villermaux J, A new chemical method for the study of local micromixing conditions in industrial stirred tanks, ACS Symp. Ser. 196 (1982), p. 545-554... [Pg.330]

In chemical process industries, stirred tank reactors are frequently used. For hydrogenation/oxi-dation applications, the heats of reaction are large, and the overall operation may be heat transfer controlled. In reactions where selectivity is of importance (for example, oxidation, hydrogenation,... [Pg.839]

Barthole, J., R. David, and J. Villermaux (1982). A New Chemical Method for the Study of Local Micromixing Conditions in Industrial Stirred Tanks, ISCRE, Boston. [Pg.862]

Specific reactor characteristics depend on the particular use of the reactor as a laboratory, pilot plant, or industrial unit. AH reactors have in common selected characteristics of four basic reactor types the weH-stirred batch reactor, the semibatch reactor, the continuous-flow stirred-tank reactor, and the tubular reactor (Fig. 1). A reactor may be represented by or modeled after one or a combination of these. SuitabHity of a model depends on the extent to which the impacts of the reactions, and thermal and transport processes, are predicted for conditions outside of the database used in developing the model (1-4). [Pg.504]

Continuous-Flow Stirred-Tank Reactors. The synthesis of j )-tolualdehyde from toluene and carbon monoxide has been carried out using CSTR equipment (81). -Tolualdehyde (PTAL) is an intermediate in the manufacture of terephthabc acid. Hydrogen fluoride—boron trifluoride catalyzes the carbonylation of toluene to PTAL. In the industrial process, separate stirred tanks are used for each process step. Toluene and recycle HF and BF ... [Pg.522]

Some modes of heat transfer to stirred tank reacdors are shown in Fig. 23-1 and to packed bed reactors in Fig. 23-2. Temperature and composition profiles of some processes are shown in Fig. 23-3. Operating data, catalysts, and reaction times are stated for a number of industrial reaction processes in Table 23-1. [Pg.2070]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

FIG. 23-25 Typ es of industrial gas/Hqiiid reactors, (a) Tray tower, (h) Packed, counter current, (c) Packed, parallel current, (d) Falling liquid film, (e) Spray tower, if) Bubble tower, (g) Venturi mixer, h) Static in line mixer, ( ) Tubular flow, (j) Stirred tank, (A,) Centrifugal pump, (/) Two-phase flow in horizontal tubes. [Pg.2105]

Various experimental methods to evaluate the kinetics of flow processes existed even in the last centuty. They developed gradually with the expansion of the petrochemical industry. In the 1940s, conversion versus residence time measurement in tubular reactors was the basic tool for rate evaluations. In the 1950s, differential reactor experiments became popular. Only in the 1960s did the use of Continuous-flow Stirred Tank Reactors (CSTRs) start to spread for kinetic studies. A large variety of CSTRs was used to study heterogeneous (contact) catalytic reactions. These included spinning basket CSTRs as well as many kinds of fixed bed reactors with external or internal recycle pumps (Jankowski 1978, Berty 1984.)... [Pg.53]

In previous studies, the main tool for process improvement was the tubular reactor. This small version of an industrial reactor tube had to be operated at less severe conditions than the industrial-size reactor. Even then, isothermal conditions could never be achieved and kinetic interpretation was ambiguous. Obviously, better tools and techniques were needed for every part of the project. In particular, a better experimental reactor had to be developed that could produce more precise results at well defined conditions. By that time many home-built recycle reactors (RRs), spinning basket reactors and other laboratory continuous stirred tank reactors (CSTRs) were in use and the subject of publications. Most of these served the original author and his reaction well but few could generate the mass velocities used in actual production units. [Pg.279]

Knowledge of these types of reaetors is important beeause some industrial reaetors approaeh the idealized types or may be simulated by a number of ideal reaetors. In this ehapter, we will review the above reaetors and their applieations in the ehemieal proeess industries. Additionally, multiphase reaetors sueh as the fixed and fluidized beds are reviewed. In Chapter 5, the numerieal method of analysis will be used to model the eoneentration-time profiles of various reaetions in a bateh reaetor, and provide sizing of the bateh, semi-bateh, eontinuous flow stirred tank, and plug flow reaetors for both isothermal and adiabatie eonditions. [Pg.220]

In Chapter 3, the analytieal method of solving kinetie sehemes in a bateh system was eonsidered. Generally, industrial realistie sehemes are eomplex and obtaining analytieal solutions ean be very diffieult. Beeause this is often the ease for sueh systems as isothermal, eonstant volume bateh reaetors and semibateh systems, the designer must review an alternative to the analytieal teehnique, namely a numerieal method, to obtain a solution. Eor systems sueh as the bateh, semibateh, and plug flow reaetors, sets of simultaneous, first order ordinary differential equations are often neeessary to obtain die required solutions. Transient situations often arise in die ease of eontinuous flow stirred tank reaetors, and die use of numerieal teehniques is die most eonvenient and appropriate mediod. [Pg.279]

The various types of reaetors employed in the proeessing of fluids in the ehemieal proeess industries (CPI) were reviewed in Chapter 4. Design equations were also derived (Chapters 5 and 6) for ideal reaetors, namely the eontinuous flow stirred tank reaetor (CFSTR), bateh, and plug flow under isothermal and non-isothermal eonditions, whieh established equilibrium eonversions for reversible reaetions and optimum temperature progressions of industrial reaetions. [Pg.552]

The objeetive of the following model is to investigate the extent to whieh Computational Fluid Mixing (CFM) models ean be used as a tool in the design of industrial reaetors. The eommereially available program. Fluent , is used to ealeulate the flow pattern and the transport and reaetion of ehemieal speeies in stirred tanks. The blend time predietions are eompared with a literature eonelation for blend time. The produet distribution for a pair of eompeting ehemieal reaetions is eompared with experimental data from the literature. [Pg.795]

Bourne, J.R. and Yu, S., 1994. Investigation of micromixing in stirred tank reactors using parallel reactions. Industrial and Engineering Chemistry Research, 33, 41-55. [Pg.301]

Stirred tank reactor the most common type of bioreactor used in industry. A draught is fitted which provides a defined circulation pattern. [Pg.144]

The design emphasis of this section will be on stirred tank bioreactors, which are the most common type used commercially in many bioprocess industries. [Pg.144]

The research programme into n-butyl lithium initiated, anionic polymerization started at Leeds in 1972 and involved the construction of a pilot scale, continuous stirred tank reactor. This was operated isothermally, to obtain data under a typical range of industrial operating conditions. [Pg.281]

A pilot scale plant, incorporating a three litre continuous stirred tank reactor, was used for an investigation into the n-butyl lithium initiated, anionic polymerization of butadiene in n-hexane solvent. The rig was capable of being operated at elevated temperatures and pressures, comparable with industrial operating conditions. [Pg.294]

Chapter 2 treated multiple and complex reactions in an ideal batch reactor. The reactor was ideal in the sense that mixing was assumed to be instantaneous and complete throughout the vessel. Real batch reactors will approximate ideal behavior when the characteristic time for mixing is short compared with the reaction half-life. Industrial batch reactors have inlet and outlet ports and an agitation system. The same hardware can be converted to continuous operation. To do this, just feed and discharge continuously. If the reactor is well mixed in the batch mode, it is likely to remain so in the continuous mode, as least for the same reaction. The assumption of instantaneous and perfect mixing remains a reasonable approximation, but the batch reactor has become a continuous-flow stirred tank. [Pg.117]

This chapter develops the techniques needed to analyze multiple and complex reactions in stirred tank reactors. Physical properties may be variable. Also treated is the common industrial practice of using reactor combinations, such as a stirred tank in series with a tubular reactor, to accomplish the overall reaction. [Pg.117]

The difference between complete segregation and maximum mixedness is largest when the reactor is a stirred tank and is zero when the reactor is a PFR. Even for the stirred tank case, it has been difficult to find experimental evidence of segregation for single-phase reactions. Real CSTRs approximate perfect mixing when observed on the time and distance scales appropriate to industrial reactions, provided that the feed is premixed. Even with unmixed... [Pg.573]


See other pages where Industrial stirred tank is mentioned: [Pg.133]    [Pg.159]    [Pg.95]    [Pg.133]    [Pg.545]    [Pg.546]    [Pg.202]    [Pg.143]    [Pg.501]    [Pg.141]    [Pg.164]    [Pg.133]    [Pg.133]    [Pg.159]    [Pg.95]    [Pg.133]    [Pg.545]    [Pg.546]    [Pg.202]    [Pg.143]    [Pg.501]    [Pg.141]    [Pg.164]    [Pg.133]    [Pg.67]    [Pg.240]    [Pg.243]    [Pg.41]    [Pg.296]    [Pg.660]    [Pg.786]    [Pg.233]    [Pg.295]    [Pg.173]    [Pg.397]    [Pg.496]   
See also in sourсe #XX -- [ Pg.545 , Pg.546 , Pg.547 , Pg.548 , Pg.549 , Pg.550 , Pg.551 , Pg.552 ]




SEARCH



© 2024 chempedia.info