Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma instrumentation

FIGURE 10.20 An illustration of a mass spectrometer coupled to an inductively coupled plasma instrument. [Pg.291]

Because light emitted from inductively coupled plasma torches is characteristic of the elements present, the torches were originally introduced for instruments that optically measured the frequencies and intensities of the emitted light and used them, rather than ions, to estimate the amounts and types of elements present (inductively coupled plasma atomic emission spectroscopy. [Pg.87]

P. W. J. M. Boumans, ed.. Inductively Coupled Plasma Emission Spectroscopy, 2 Vols. ( Methodology, Instrumentation, and Peformance Applications and Eundamentals),]oVn. Wiley Sons, Inc., New York, 1987. [Pg.324]

The Inductively Coupled Plasma (ICP) has become the most popular source for multielement analysis via optical spectroscopy since the introduction of the first commercial instruments in 1974. About 6000 ICP-Optical Emission Spectrometry (ICP-OES) instruments are in operation throughout the world. [Pg.633]

Instrumentation for inductively coupled plasma-optical emission spectrometry. [Pg.635]

Verrept P, Dams R, Kurfurst U 1993) Electrothermal vaporisation inductively coupled plasma atomic emission spectrometry for the analysis of solid samples contribution to instrumentation and methodology. Fresenius 2 Anal Chem 345 1035-1041. [Pg.153]

In modern times, most analyses are performed on an analytical instrument for, e.g., gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-violet/visible (UV) or infrared (IR) spectrophotometry, atomic absorption spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry. Each of these instruments has a limitation on the amount of an analyte that they can detect. This limitation can be expressed as the IDL, which may be defined as the smallest amount of an analyte that can be reliably detected or differentiated from the background on an instrument. [Pg.63]

In contrast to thermal ionization methods, where the tracer added must be of the same element as the analyte, tracers of different elemental composition but similar ionization efficiency can be utilized for inductively coupled plasma mass spectrometry (ICPMS) analysis. Hence, for ICPMS work, uranium can be added to thorium or radium samples as a way of correcting for instrumental mass bias (e g., Luo et al. 1997 Stirling et al. 2001 Pietruszka et al. 2002). The only drawback of this approach is that small inter-element (e g., U vs. Th) biases may be present during ionization or detection that need to be considered and evaluated (e.g., Pietruszka et al. 2002). [Pg.27]

In isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) the spike, the unspiked and a spiked sample are measured by ICP-MS in order to determine the isotope ratio. Using this technique, more precise and accurate results can be obtained than by using a calibration graph or by standard addition. This is due to elimination of various systematic errors. Isotopes behave identically in most chemical and physical processes. Signal suppression and enhancement due to the matrix in ICP-MS affects both isotopes equally. The same holds for most long-term instrumental fluctuations and drift. Accuracy and precision obtained with ID-ICP-QMS are better than with other ICP-QMS calibration... [Pg.660]

Secondary Ion Mass Spectrometry Basic Concepts, Instrumental Aspects, Applications and Trends. By A. Benninghoven, F. G. Ruenauer, and H.W.Werner Analytical Applications of Lasers. Edited by Edward H. Piepmeier Applied Geochemical Analysis. By C. O. Ingamells and F. F. Pitard Detectors for Liquid Chromatography. Edited by Edward S.Yeung Inductively Coupled Plasma Emission Spectroscopy Part 1 Methodology, Instrumentation, and Performance Part II Applications and Fundamentals. Edited by J. M. Boumans... [Pg.653]

The metal content analysis of the samples was effected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES Varian Liberty II Instrument) after microwaves assisted mineralisation in hydrofluoric/hydrochloric acid mixture. Ultraviolet and visible diffuse reflectance spectroscopy (UV-Vis DRS) was carried out in the 200-900 nm range with a Lambda 40 Perkin Elmer spectrophotometer with a BaS04 reflection sphere. HF was used as a reference. Data processing was carried out with Microcal Origin 7.1 software. [Pg.286]

The chemical composition of the samples was determined using an inductively Coupled plasma atomic emission spectrometer (ICP-AES) JY 38 from Jobin Yvon. Specific surface area values were determined by BET method using a Micromeritics Instrument Corp. FlowSorb 2300. The basicity of the materials was studied by temperature programmed desorption (TPD) of C02 used as a probe molecule. The equipment was described in a previous work [7]. FTIR spectra of pellets pressed at 2.5xl08 Pa were recorded with a Vector 22 spectrometer from Brucker. The samples were diluted with KBr (lOOmg KBr - 1.5mg of the sample). [Pg.298]

The outline of the construction of a typical plasma emission spectrometer is to be seen in Figure 8.10. The example shown has an inductively coupled plasma, excitation source, but the outline would be similar were a dc source to be fitted. Different combinations of prisms and diffraction gratings may be used in the dispersion of the emitted radiation, and in the presentation of the analytical signal. Instruments are computerized in operation and make use of automatic sample handling. Sophisticated data handling packages are employed routinely to deal with interferences, and to provide for clarity in data output. [Pg.299]

Sample preparation for analysis by hyphenated methods requires some additional planning when compared to nonhyphenated methods. All steps, extraction, concentration, and final solvent selection must take into consideration and be compatible with all the components of the hyphenated instrumentation. For gas chromatographic methods, all the components in the mixture must be in the gaseous state. For liquid chromatography (LC) or high-performance liquid chromatography (HPLC), the samples of the analytes of interest can be solids or liquids, neutral or charged molecules, or ions, but they must be in solution. If the follow-on analysis is by MS, then each of the analytes may require a different method of introduction into the MS. Metals and metal ions may be introduced by HPLC if they are in solution but commonly are introduced via AAS or inductively coupled plasma (ICP). Other analytes may be directly introduced from HPLC to MS [2],... [Pg.324]

When the problem has been defined and needed background information has been studied, it is time to consider which analytical methods will provide the data you need to solve the problem. In selecting techniques, you can refer back to the other chapters in this book. For example, if you want to measure the three heavy metals (Co, Fe, and Ni) that were suspect in the Bulging Drum Problem, you might immediately think of atomic absorption or inductively coupled plasma atomic emission spectroscopies and reread Chapter 8 of this book. How would you choose between them Which would be more accurate More precise Does your lab have both instruments Are they both in working order What if you have neither of them What sample preparation would be needed ... [Pg.814]

The instrument which uses this plasma torch is called an inductively coupled plasma atomic emission spectrometer (ICP-AES) or an inductively coupled plasma optical emission spectrometer (ICP-OES). It is similar to an... [Pg.57]

Inductively coupled plasma mass spectrometry is now such an important technique in archaeology, as elsewhere, that we devote a whole chapter to it. There are now a number of different ICP MS modes of operation (solution analysis, laser ablation, multicollector, high resolution) this chapter provides a general overview. Further description of the instrumentation for ICP MS may be found in Harris (1997) and Montaser (1998). Some general applications of solution ICP MS are discussed by Date and Gray (1989), Platzner (1997), and Kennett et al. (2001). [Pg.195]

Boss, C. B. and Fredeen, K. J. (1999). Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Norwalk, CO, Perkin Elmer (2nd edn.). [Pg.354]

Zheng, J., Goessler, W., Geiszinger, A., et al. (1997). Multi-element determination in earthworms with instrumental neutron activation analysis and inductively coupled plasma mass spectrometry a comparison. Journal of Radioanalytical and Nuclear Chemistry 223 149-155. [Pg.390]

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

Wendt and Fassel [2] reported early experiments with a tear-drop shaped inductively coupled plasma but later described the medium power l-3kW 18mm annular plasma now favoured in modern analytical instruments [3]. [Pg.39]

ICP Light emitted by atoms and monoatomic ions in an inductively coupled plasma is measured A popular technique useful over a broad concentration range multielement analysis is possible instruments are costly... [Pg.267]


See other pages where Inductively coupled plasma instrumentation is mentioned: [Pg.353]    [Pg.624]    [Pg.634]    [Pg.223]    [Pg.665]    [Pg.214]    [Pg.278]    [Pg.72]    [Pg.261]    [Pg.125]    [Pg.340]    [Pg.295]    [Pg.1]    [Pg.29]    [Pg.101]    [Pg.225]    [Pg.336]    [Pg.406]    [Pg.252]    [Pg.195]    [Pg.40]    [Pg.246]    [Pg.309]    [Pg.376]    [Pg.76]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 ]




SEARCH



Coupled Plasma

Coupling instrumentation

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma atomic absorption spectrometry instrumentation

Inductively coupled plasma atomic instrumentation

Inductively coupled plasma mass instrumentation

Inductively coupled plasma mass spectrometry instrument

Inductively coupled plasma optical emission spectroscopy instrumentation

Inductively coupled plasma-mass spectrometry instrumentation

© 2024 chempedia.info