Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indole reactivities

For a general review of the indoles, including a theoretical treatment of indole reactivity and substituent effects, see Sundberg (70M12). [Pg.221]

In the indole series, the A -pyridylsulfonyl indole 3.189 gave the product of C2 vinylation 3.190, rather than the typical C3 vinylation, showing that the coordination effect of the pyridine can overwhelm the normal indole reactivity (Scheme 3.74). The reaction presumably proceeds via a chelated palladium intermediate 3.192. Interestingly, an indole dimer 3.191 is produced in the absence of an added alkene, showing that the palladium(II) intermediate is capable of attacking a second molecule of the substrate. [Pg.115]

Reactions of aromatic and heteroaromatic rings are usually only found with highly reactive compounds containing strongly electron donating substituents or hetero atoms (e.g. phenols, anilines, pyrroles, indoles). Such molecules can be substituted by weak electrophiles, and the reagent of choice in nature as well as in the laboratory is usually a Mannich reagent or... [Pg.291]

The reaction conditions applied are usually heating the amine with a slight excess of aldehyde and a considerable.excess of 2d-30hydrochloric acid at 100 °C for a few hours, but much milder ( physiological ) conditions can be used with good success. Diols, olefinic double bonds, enol ethers, and glycosidic bonds survive a Pictet-Spengler reaction very well, since phenol and indole systems are much more reactive than any of these acid sensitive functional groups (W.M. Whaley, 1951 J.E.D. Barton, 1965 A.R. Battersby, 1969). [Pg.292]

Heteroaromatics such as furan, thiophene, and even the 2-pyridone 280 react with acrylate to form 281(244-246]. Benzene and heteroaromatic rings are introduced into naphthoquinone (282) as an alkene component[247]. The pyrrole ring is more reactive than the benzene ring in indole. [Pg.58]

As is broadly true for aromatic compounds, the a- or benzylic position of alkyl substituents exhibits special reactivity. This includes susceptibility to radical reactions, because of the. stabilization provided the radical intermediates. In indole derivatives, the reactivity of a-substituents towards nucleophilic substitution is greatly enhanced by participation of the indole nitrogen. This effect is strongest at C3, but is also present at C2 and to some extent in the carbocyclic ring. The effect is enhanced by N-deprotonation. [Pg.3]

This reactivity pattern underlies a group of important synthetic methods in which an a-substituent is displaced by a nucleophile by an elimination-addition mechanism. Even substituents which are normally poor leaving groups, such as alkoxy and dialkylamino, are readily displaced in the indole series. [Pg.4]

As illustrated in Scheme 8.1, both 2-vinylpyrroles and 3-vinylpyiroles are potential precursors of 4,5,6,7-tetrahydroindolcs via Diels-Alder cyclizations. Vinylpyrroles are relatively reactive dienes. However, they are also rather sensitive compounds and this has tended to restrict their synthetic application. While l-methyl-2-vinylpyrrole gives a good yield of an indole with dimethyl acetylenedicarboxylate, ot-substitiients on the vinyl group result in direct electrophilic attack at C5 of the pyrrole ring. This has been attributed to the stenc restriction on access to the necessary cisoid conformation of the 2-vinyl substituent[l]. [Pg.84]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

There are a wide variety of methods for introduction of substituents at C3. Since this is the preferred site for electrophilic substitution, direct alkylation and acylation procedures are often effective. Even mild electrophiles such as alkenes with EW substituents can react at the 3-position of the indole ring. Techniques for preparation of 3-lithioindoles, usually by halogen-metal exchange, have been developed and this provides access not only to the lithium reagents but also to other organometallic reagents derived from them. The 3-position is also reactive toward electrophilic mercuration. [Pg.105]

Alkylation can also be accomplished with electrophilic alkenes. There is a dichotomy between basic and acidic conditions. Under basic conditions, where the indole anion is the reactive nucleophile, A-alkylation occurs. Under acidic conditions C-alkylation is observed. The reaction of indole with 4-vinylpyri-dine is an interesting illustration. Good yields of the 3-alkylation product are obtained in refluxing acetic acid[18] whereas if the reaction is done in ethanol containing sodium ethoxide 1-alkylation occurs[19]. Table 11.2 gives some examples of 3-alkylation using electrophilic alkenes. [Pg.107]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Indole is a heterocycHc analogue of naphthalene. The basic reactivity patterns of indole can be understood as resulting from the fusion of an electron-rich pyrrole ring with a ben2ene ring. [Pg.84]

Electrophilic Aromatic Substitution. The Tt-excessive character of the pyrrole ring makes the indole ring susceptible to electrophilic attack. The reactivity is greater at the 3-position than at the 2-position. This reactivity pattern is suggested both by electron density distributions calculated by molecular orbital methods and by the relative energies of the intermediates for electrophilic substitution, as represented by the protonated stmctures (7a) and (7b). Stmcture (7b) is more favorable than (7a) because it retains the ben2enoid character of the carbocycHc ring (12). [Pg.84]

This basic reactivity pattern is not greatiy affected by the presence of a 1- or 2- substituent, although electron-attracting substituents do diminish the reactivity. The pattern for substitution in 3-substituted indoles can be compHcated by the fact that the electrophile may preferentially attack the 3-position, even when it is already substituted. When this is the case, migration of either the new or the original substituent to C-2 may occur. [Pg.84]

Many of the common electrophilic aromatic substitution reactions can be conducted on indole. CompHcations normally arise either because of excessive reactivity or the relative instabiUty of the substitution product. This is the case with halogenation. [Pg.84]

Acylation. Acylation is the most rehable means of introducing a 3-substituent on the indole ring. Because 3-acyl substituents can be easily reduced to 3-aLkyl groups, a two-step acylation—reduction sequence is often an attractive alternative to direct 3-aLkylation. Several kinds of conditions have been employed for acylation. Very reactive acyl haUdes, such as oxalyl chloride, can effect substitution directiy without any catalyst. Normal acid chlorides are usually allowed to react with the magnesium (15) or 2inc (16) salts. The Vilsmeier-Haack conditions involving an amide and phosphoms oxychloride, in which a chloroiminium ion is the active electrophile, frequentiy give excellent yields of 3-acylindoles. [Pg.85]

Oxidation. As a 7t-excessive heterocycle, indole is susceptible to oxidation a variety of oxidation intermediates and products have been observed. With oxygen as the oxidant, the key intermediate is normally a 3-hydroperoxy-3ff-indole. These intermediates ate observable for 2,3-disubstituted indoles but are unstable for less substituted derivatives. Figure 1 indicates typical reactivity patterns toward oxygen. [Pg.85]

The reactivity sequence furan > tellurophene > selenophene > thiophene is thus the same for all three reactions and is in the reverse order of the aromaticities of the ring systems assessed by a number of different criteria. The relative rate for the trifluoroacetylation of pyrrole is 5.3 x lo . It is interesting to note that AT-methylpyrrole is approximately twice as reactive to trifluoroacetylation as pyrrole itself. The enhanced reactivity of pyrrole compared with the other monocyclic systems is also demonstrated by the relative rates of bromination of the 2-methoxycarbonyl derivatives, which gave the reactivity sequence pyrrole>furan > selenophene > thiophene, and by the rate data on the reaction of the iron tricarbonyl-complexed carbocation [C6H7Fe(CO)3] (35) with a further selection of heteroaromatic substrates (Scheme 5). The comparative rates of reaction from this substitution were 2-methylindole == AT-methylindole>indole > pyrrole > furan > thiophene (73CC540). [Pg.43]

Indole undergoes add-catalyzed dimerization the 3H-indoIium ion acts as an electrophile and attacks an unprotonated molecule to give the dimer (46). Protonation of the dimer in turn gives an electrophilic species from which a trimeric product can be derived (77CPB3122). Af-Methylisoindole undergoes acid-catalyzed polymerization, indicating that protonation at C-1 gives a reactive electrophilic intermediate. [Pg.49]

By using an aromatic aldehyde carrying an electron-releasing group the intermediate cation can be stabilized. This is the basis of the widely-used Ehrlich colour reaction for pyrroles, indoles and furans which have a free reactive nuclear position (Scheme 21). [Pg.54]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

Eberle has explored the synthetic possibilities of (421) with aldehydes it leads to hexa-hydropyrimido[i,2-a]indoles (73T4049). Its 5-oxo derivative (l-phenyl-5-pyrazolidinone) has a comparable reactivity (76JOC3775). [Pg.257]

Indole, 1-amino-reactivity, 4, 297 synthesis, 4, 361 Indole, 2-amino-oxidation, 4, 299 tautomerism, 4, 38, 74, 200 Indole, 3-amino-... [Pg.667]

Two new sections on the protection for indoles, imidazoles, and pyrroles, and protection for the amide — NH are included. They are separated from the regular amines because their chemical properties are sufficienth different to affect the chemistry of protection and deprotection. The Reactivity Charts in Chapter 8 are identical to those in the first edition. The chart number appears beside the name of each protective group when it is first discussed. [Pg.475]

Formally analogous to the foregoing Grignard additions are the intramolecular condensations of amides with aromatic systems, found in the Bischler-Napieralski reaction 101), which is of particular interest in isoquinoline and indole alkaloid syntheses (102). Condensations of amidines with reactive methylene compounds also led to enamines (103-106). [Pg.324]

In the arylations of enamines with very reactive aryl halides (352,370) such as 2,4-dinitrochlorobenzene, the closely related mechanistic pathway of addition of the enamine to the aromatic system, followed by elimination of halide ion, can be assumed. The use of n-nitroarylhalides furnishes compounds which can be converted to indolic products by reductive cycliza-tion. Less reactive aryl halides, such as p-nitrochlorobenzene, lead only to N-arylation or oxidation products of the enamines under more vigorous conditions. [Pg.380]


See other pages where Indole reactivities is mentioned: [Pg.57]    [Pg.1]    [Pg.3]    [Pg.3]    [Pg.25]    [Pg.89]    [Pg.92]    [Pg.99]    [Pg.105]    [Pg.113]    [Pg.117]    [Pg.125]    [Pg.125]    [Pg.150]    [Pg.164]    [Pg.84]    [Pg.296]    [Pg.552]    [Pg.666]    [Pg.667]    [Pg.670]   


SEARCH



Indole derivatives reactivity

Indole reactivity towards electrophiles

Indole ring reactivity

Indoles electrophilic substitution, relative reactivity

Indoles reactivity

Indoles reactivity

Reactivity of the Indole Ring

Reactivity parameters, indole

© 2024 chempedia.info