Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX mobility

Analyses were carried out on a 300 x 4.6 mm i.d. column of Lichrosorb NH2 (10 pm particle size). Detector refractive index. Mobile phase 0.02 M ammonium formate in acetonitrile-water 60 40 adjusted to pH 6 with formic acid. Flow rate 2 ml/min. For quantification, pure compounds were used as external standard. [Pg.118]

Substance index Reaction index Mobile phase Product Reactant Stationary phase (Internal) standard Column inlet... [Pg.1998]

Choosing a Mobile Phase Several indices have been developed to assist in selecting a mobile phase, the most useful of which is the polarity index. Table 12.3 provides values for the polarity index, P, of several commonly used mobile phases, in which larger values of P correspond to more polar solvents. Mobile phases of intermediate polarity can be fashioned by mixing together two or more of the mobile phases in Table 12.3. For example, a binary mobile phase made by combining solvents A and B has a polarity index, of... [Pg.580]

A reverse-phase HPLC separation is carried out using a mobile-phase mixture of 60% v/v water and 40% v/v methanol. What is the mobile phase s polarity index ... [Pg.581]

A useful guide when using the polarity index is that a change in its value of 2 units corresponds to an approximate tenfold change in a solute s capacity factor. Thus, if k is 22 for the reverse-phase separation of a solute when using a mobile phase of water (P = 10.2), then switching to a 60 40 water-methanol mobile phase (P = 8.2) will decrease k to approximately 2.2. Note that the capacity factor decreases because we are switching from a more polar to a less polar mobile phase in a reverse-phase separation. [Pg.581]

Changing the mobile phase s polarity index, by changing the relative amounts of two solvents, provides a means of changing a solute s capacity factor. Such... [Pg.581]

Kovat s retention index (p. 575) liquid-solid adsorption chromatography (p. 590) longitudinal diffusion (p. 560) loop injector (p. 584) mass spectrum (p. 571) mass transfer (p. 561) micellar electrokinetic capillary chromatography (p. 606) micelle (p. 606) mobile phase (p. 546) normal-phase chromatography (p. 580) on-column injection (p. 568) open tubular column (p. 564) packed column (p. 564) peak capacity (p. 554)... [Pg.609]

Antiwear premium hydrauHc fluids represent the largest volume of hydrauHc fluids used. Shortly after their introduction in 1960, a second product group was formulated, characterized by the same antiwear characteristics but having lower pour points and higher viscosity indexes. These were formulated for use in mobile and marine appHcations subject to temperature extremes. [Pg.262]

Properties provided by the branched hydrocarbon chain stmcture of these PAO fluids include high viscosity index in the 130—150 range, pour points of —50 to —60° C for ISO 32 to 68 viscosity range (SAE lOW and SAE 20W, respectively), and high temperature stabifity superior to commercial petroleum products. In their use in automotive oils such as Mobil 1, some ester synthetic fluid is normally included in the formulation to provide sufficient solubihty for the approximately 20% additives now employed in many automotive oils. [Pg.245]

Another classification of detector is the bulk-property detector, one that measures a change in some overall property of the system of mobile phase plus sample. The most commonly used bulk-property detector is the refractive-index (RI) detector. The RI detector, the closest thing to a universal detector in lc, monitors the difference between the refractive index of the effluent from the column and pure solvent. These detectors are not very good for detection of materials at low concentrations. Moreover, they are sensitive to fluctuations in temperature. [Pg.110]

Thermal Properties. Thermal properties include heat-deflection temperature (HDT), specific heat, continuous use temperature, thermal conductivity, coefficient of thermal expansion, and flammability ratings. Heat-deflection temperature is a measure of the minimum temperature that results in a specified deformation of a plastic beam under loads of 1.82 or 0.46 N/mm (264 or 67 psi, respectively). Eor an unreinforced plastic, this is typically ca 20°C below the glass-transition temperature, T, at which the molecular mobility is altered. Sometimes confused with HDT is the UL Thermal Index, which Underwriters Laboratories estabflshed as a safe continuous operation temperature for apparatus made of plastics (37). Typically, UL temperature indexes are significantly lower than HDTs. Specific heat and thermal conductivity relate to insulating properties. The coefficient of thermal expansion is an important component of mold shrinkage and must be considered when designing composite stmctures. [Pg.264]

Azetidine (1) is a colourless, mobile liquid, b.p. 62.5 C/747 mmHg (56JA4917), which is completely miscible with water. Its density 4 = 0.8412 and refractive index d = 1.4278 (37HCA109). Table 1 gives b.p. and m.p. data for other representative azetidines. [Pg.238]

The absorption, distribution, and accumulation of lead in the human body may be represented by a three-part model (6). The first part consists of red blood cells, which move the lead to the other two parts, soft tissue and bone. The blood cells and soft tissue, represented by the liver and kidney, constitute the mobile part of the lead body burden, which can fluctuate depending on the length of exposure to the pollutant. Lead accumulation over a long period of time occurs in the bones, which store up to 95% of the total body burden. However, the lead in soft tissue represents a potentially greater toxicological hazard and is the more important component of the lead body burden. Lead measured in the urine has been found to be a good index of the amount of mobile lead in the body. The majority of lead is eliminated from the body in the urine and feces, with smaller amounts removed by sweat, hair, and nails. [Pg.102]

Web site www.exxonmobil.com/coal/index Parent Company Exxon Mobil Corporation (US)... [Pg.227]

For acrylate polymers with higher levels of carboxylic acids, THF can be modified by the addition of acids such as acetic, phosphoric, or trifluoroacetic. Levels as high as 10% acetic acid are considered acceptable by most manufacturers for their styrene/DVB columns. If such a modified mobile phase is used, it may need to be premixed rather than generated using a dynamic mixing HPLC pump because on-line mixing often leads to much noisier baselines, particularly when using a refractive index detector. [Pg.553]

Refractive index detectors. These bulk property detectors are based on the change of refractive index of the eluant from the column with respect to pure mobile phase. Although they are widely used, the refractive index detectors suffer from several disadvantages — lack of high sensitivity, lack of suitability for gradient elution, and the need for strict temperature control ( + 0.001 °C) to operate at their highest sensitivity. A pulseless pump, or a reciprocating pump equipped with a pulse dampener, must also be employed. The effect of these limitations may to some extent be overcome by the use of differential systems in which the column eluant is compared with a reference flow of pure mobile phase. The two chief types of RI detector are as follows. [Pg.225]

The deflection refractometer (Fig. 8.4), which measures the deflection of a beam of monochromatic light by a double prism in which the reference and sample cells are separated by a diagonal glass divide. When both cells contain solvent of the same composition, no deflection of the light beam occurs if, however, the composition of the column mobile phase is changed because of the presence of a solute, then the altered refractive index causes the beam to be deflected. The magnitude of this deflection is dependent on the concentration of the solute in the mobile phase. [Pg.225]

The free oil can be determined by an ion exchange HPLC technique. A solution of the sample in ethyl alcohol is analysed by high-performance ion exchange chromatography using a specially prepared ion exchange resin stationary phase, ethanol mobile phase, and differential refractive index detection. [Pg.440]

The dead point is obtained by including in the sample a trace of an unretained solute or, more often, one of the components of the mobile phase. For example, when using a methanol water mixture as the mobile phase, the dead point is obtained from the elution of a pure sample of methanol. The pure methanol can often be monitored, even by a UV detector, as the transient change in refractive index resulting from the methanol is sufficient to cause a disturbance that is detectable. [Pg.11]

If the mixture to be separated contains fairly polar materials, the silica may need to be deactivated by a more polar solvent such as ethyl acetate, propanol or even methanol. As already discussed, polar solutes are avidly adsorbed by silica gel and thus the optimum concentration is likely to be low, e.g. l-4%v/v and consequently, a little difficult to control in a reproducible manner. Ethyl acetate is the most useful moderator as it is significantly less polar than propanol or methanol and thus, more controllable, but unfortunately adsorbs in the UV range and can only be used in the mobile phase at concentrations up to about 5%v/v. Above this concentration the mobile phase may be opaque to the detector and thus, the solutes will not be discernible against the background adsorption of the mobile phase. If a detector such as the refractive index detector is employed then there is no restriction on the concentration of the moderator. Propanol and methanol are transparent in the UV so their presence does not effect the performance of a UV detector. However, their polarity is much greater than that of ethyl acetate and thus, the adjustment of the optimum moderator concentration is more difficult and not easy to reproduce accurately. For more polar mixtures it is better to explore the possibility of a reverse phase (which will be discussed shortly) than attempt to utilize silica gel out of the range of solutes for which it is appropriate. [Pg.70]

The separation was carried out on a TSKgel Amide-80 column 4.6 mm i.d. and 25 cm long with a mobile phase consisting of a 80% acetonitrile 20% water mixture. The flow rate was 1 ml/min and the column was operated at an elevated temperature of 80°C. The saccharides shown were 1/ rhamnose, 2/ fucose, 3/ xylose, 4/ fructose, 5/ mannose, 6/ glucose, 7/ sucrose and 8/ maltose. The analysis was completed in less than 20 minutes. These types of separations including other biomonomers, dimers and polymers are frequently carried out employing refractive index detection. [Pg.186]

Qualitative (identification) applications depend upon the comparison of the retention characteristics of the unknown with those of reference materials. In the case of gas chromatography, this characteristic is known as the retention index and, although collections of data on popular stationary phases exist, it is unlikely that any compound has a unique retention index and unequivocal identification can be effected. In liquid chromatography, the situation is more complex because there is a much larger number of combinations of stationary and mobile phases in use, and large collections of retention characteristics on any single system do not exist. In addition, HPLC is a less efficient separation... [Pg.25]

This classification is concerned with whether the detector monitors a property of the solute (analyte), e.g. the UV detector, or a change in some property of the solvent (mobile phase) caused by the presence of an analyte, e.g. the refractive index detector. [Pg.33]

We now describe a relatively simple MD model of a low-index crystal surface, which was conceived for the purpose of studying the rate of mass transport (8). The effect of temperature on surface transport involves several competing processes. A rough surface structure complicates the trajectories somewhat, and the diffusion of clusters of atoms must be considered. In order to simplify the model as much as possible, but retain the essential dynamics of the mobile atoms, we will consider a model in which the atoms move on a "substrate" represented by an analytic potential energy function that is adjusted to match that of a surface of a (100) face-centered cubic crystal composed of atoms interacting with a Lennard-Jones... [Pg.221]

Published refractive index data for the mobile phase, polystyrene, polyacrylonitrile, and the two monomers were used to calculate refractive index detector calibrations for the two homopolymers. The published data were used to determine relationship between refractive index increments of monomer and corresponding homopolymer. Chromatographic refractometer calibrations for the two homopelymers were then calculated from experimentally measured calibration data for the two monomers. [Pg.81]

Solvent strength determines the value, but not the selectivity. The mobile phase can be established by using the polarity index P proposed by Snyder. The highest values of P represent the strongest solute adsorbed in conventional TLC but represent the weakest for the separation in reversed phases. Sometimes aqueous polar mixtures cannot totally wet the chemically bonded layer. For this reason, checking... [Pg.86]

It is important to know the influence of the physicochemical parameters of the mobile phase (dipole moment, dielectric constant, and refractive index) on solvent strength and selectivity. The main interactions in planar chromatography between the molecules of the mobile phases and those of solutes are caused by dispersion forces related to the refractive index, dipole-dipole forces related to the dipole moment, induction forces related to a permanent dipole and an induced one, hydrogen bonding, and dielectric interactions related to the dielectric constant. Solvent strength depends mainly on the dipole moment of the mobile phase, whereas the solvent selectivity depends on the dielectric constant of the mobile phase. [Pg.95]

The CHI parameter approximates the percentage of organic modifier in the mobile phase for eluting the compounds and can be used for high-throughput determination of physicochemical properties (50-100 compounds per day). CHI is a system property index, and depends on the nature of the stationary phase and the organic modifier as well as the pH of the mobile phase for ionizable compounds. [Pg.342]


See other pages where INDEX mobility is mentioned: [Pg.585]    [Pg.261]    [Pg.52]    [Pg.404]    [Pg.460]    [Pg.24]    [Pg.271]    [Pg.141]    [Pg.273]    [Pg.560]    [Pg.386]    [Pg.117]    [Pg.7]    [Pg.224]    [Pg.226]    [Pg.267]    [Pg.284]    [Pg.445]    [Pg.493]    [Pg.34]    [Pg.74]    [Pg.377]    [Pg.78]   
See also in sourсe #XX -- [ Pg.1565 ]




SEARCH



© 2024 chempedia.info