Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In situ formation of microemulsions

The in situ formation of microemulsions can occur in washing processes depending on the oil type and conditions. During the oil removal from hard surfaces or fabrics ternary systems occur where two or three phases coexist in equilibrium. These systems are also referred to as Windsor I or Windsor III microemulsions. The effects were studied in detail for alkyl polyglycol ethers [77]. Depending on temperature different phases exist, having a three-phase region between the temperature T and Tu (see Fig. 1.3, Chapter 1). When [Pg.246]

Studies of diffusional phenomena have direct relevance to detergency processes. Experiments are reported which investigate the effects of changes in temperature on the dynamic phenomena, which occur when aqueous solutions of pure non-ionic surfactants contact hydrocarbons such as tetradecane and hexadecane. These oils can be considered to be models of non-polar soils such as lubricating oils. The dynamic contacting phenomena, at least immediately after contact, are representative of those which occur when a cleaner solution contacts an oily soil on a polymer surface. With Ci2E5 as non-ionic surfactant at a concentration of 1 wt.% in water, quite different phenomena were observed below, above, and well above the cloud point when tetradecane or hexadecane was carefully layered on top of the aqueous solution. Below the cloud point temperature of 31°C very slow solubilisation of oil into the one-phase micellar solution occurred. At 35°C, which is just [Pg.247]

Unlike the experiments carried out below the cloud point temperature, appreciable solubilisation of oil was observed in the time frame of the study, as indicated by upward movement of the oil-microemulsion interface. Similar phenomena were observed with both tetradecane and hexadecane as the oil phases. When the temperature of the system was raised to just below the PITs of the hydrocarbons with C12E5 (45°C for tetradecane and 50°C for hexadecane), two intermediate phases formed when the initial dispersion of Li drops in the water contacted the oil. One was the lamellar liquid crystalline phase La (probably containing some dispersed water). Above it was a middle-phase microemulsion. In contrast to the studies below the cloud point temperature, there was appreciable solubilisation of hydrocarbon into the two intermediate phases. A similar progression of phases was found at 35°C using n-decane as the hydrocarbon. At this temperature, which is near the PIT of the water/decane/C Es system, the existence of a two-phase dispersion of La and water below the middle-phase microemulsion was clearly evident. These results can be utilised to optimise surfactant systems in cleaners, and in particular to improve the removal of oily soils. The formation of microemulsions is also described in the context of the pre-treatment of oil-stained textiles with a mixture of water, surfactants and co-surfactants. [Pg.248]


See other pages where In situ formation of microemulsions is mentioned: [Pg.246]    [Pg.592]   


SEARCH



Formation in microemulsions

Formation in situ

Microemulsion formation

Microemulsions formation

© 2024 chempedia.info