Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In acetonitrile

Venables D S and Schmuttenmaer C A 1998 Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy J. Ohem. Rhys. 108 4935-44... [Pg.1261]

Figure Bl.16.9. Background-free, pseudo-steady-state CIDNP spectra observed in the photoreaction of triethylamine with different sensitizers ((a), antliraquinone (b), xanthone, CIDNP net effect (c), xanthone, CIDNP multiplet effect, amplitudes multiplied by 1.75 relative to the centre trace) in acetonitrile-d3. The stmctiiral formulae of the most important products bearing polarizations (1, regenerated starting material 2, N,N-diethylvinylamine 3, combination product of amine and sensitizer) are given at the top R denotes the sensitizer moiety. The polarized resonances of these products are assigned in the spectra. Reprinted from [21]. Figure Bl.16.9. Background-free, pseudo-steady-state CIDNP spectra observed in the photoreaction of triethylamine with different sensitizers ((a), antliraquinone (b), xanthone, CIDNP net effect (c), xanthone, CIDNP multiplet effect, amplitudes multiplied by 1.75 relative to the centre trace) in acetonitrile-d3. The stmctiiral formulae of the most important products bearing polarizations (1, regenerated starting material 2, N,N-diethylvinylamine 3, combination product of amine and sensitizer) are given at the top R denotes the sensitizer moiety. The polarized resonances of these products are assigned in the spectra. Reprinted from [21].
McMorrow D and Lotshaw WT 1991 Intermolecular dynamics in acetonitrile probed with femtosecond Fourier transform Raman spectroscopy J. Phys. Cham. 95 10 395—406... [Pg.1998]

A similar approach is followed in a recent study of the Lewis-acid catalysis of a Michael addition in acetonitrile. See Fukuzumi, S. Okamoto, T. Yasui, K Suenobu, T. Itoh, S. Otera, J. Chem. Lett. 1997, 667. [Pg.73]

Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

In contrast to the situation in the absence of catalytically active Lewis acids, micelles of Cu(DS)2 induce rate enhancements up to a factor 1.8710 compared to the uncatalysed reaction in acetonitrile. These enzyme-like accelerations result from a very efficient complexation of the dienophile to the catalytically active copper ions, both species being concentrated at the micellar surface. Moreover, the higher affinity of 5.2 for Cu(DS)2 compared to SDS and CTAB (Psj = 96 versus 61 and 68, respectively) will diminish the inhibitory effect due to spatial separation of 5.1 and 5.2 as observed for SDS and CTAB. [Pg.154]

In contrast to SDS, CTAB and C12E7, CufDSjz micelles catalyse the Diels-Alder reaction between 1 and 2 with enzyme-like efficiency, leading to rate enhancements up to 1.8-10 compared to the reaction in acetonitrile. This results primarily from the essentially complete complexation off to the copper ions at the micellar surface. Comparison of the partition coefficients of 2 over the water phase and the micellar pseudophase, as derived from kinetic analysis using the pseudophase model, reveals a higher affinity of 2 for Cu(DS)2 than for SDS and CTAB. The inhibitory effect resulting from spatial separation of la-g and 2 is likely to be at least less pronoimced for Cu(DS)2 than for the other surfactants. [Pg.178]

It has been mentioned ( 4.4.2) that nitronium tetraffuoroborate reaets with pyridine to give i-nitropyridinium tetraffuoroborate. This compound and several of its derivatives have been used to effect what is called the transfer nitration ofbenzeneandtoluene. i-Nitropyridinium tetraffuoroborate is only sparingly soluble in acetonitrile, but its homologues are quite soluble and ean be used without isolation from the solution in which they are prepared. i-Nitropyridinium tetra-fluoroborate did nitrate toluene in boiling aeetonitrile slowly, but not at 25 In eontrast, i-nitro-2-pieolinium tetraffuoroborate readily... [Pg.72]

TABLE 4.5 Competitive nitrations of toluene and benzene with 1 -nitropyridinium tetrafluoroborates in acetonitrile at 25 °... [Pg.73]

Expt. 27. A solution of dinitrogen pentoxide (0-005 tnol) in acetonitrile (0-4 ml) was added slowly to the aromatic compound (o-oi mol) in acetonitrile (i ml). [Pg.101]

Pentamethylbenzene and anthracene react very rapidly with nitronium tetrafluoroborate in sulpholan to give cr-complexes, which decompose slowly (see below), and durene behaves similarly with nitronium hexafluorophosphate in acetonitrile. ... [Pg.114]

The cases of pentamethylbenzene and anthracene reacting with nitronium tetrafluoroborate in sulpholan were mentioned above. Each compound forms a stable intermediate very rapidly, and the intermediate then decomposes slowly. It seems that here we have cases where the first stage of the two-step process is very rapid (reaction may even be occurring upon encounter), but the second stages are slow either because of steric factors or because of the feeble basicity of the solvent. The course of the subsequent slow decomposition of the intermediate from pentamethylbenzene is not yet fully understood, but it gives only a poor yield of pentamethylnitrobenzene. The intermediate from anthracene decomposes at a measurable speed to 9-nitroanthracene and the observations are compatible with a two-step mechanism in which k i k E and i[N02" ] > / i. There is a kinetic isotope effect (table 6.1), its value for the reaction in acetonitrile being near to the... [Pg.115]

Besides the well-known lower basicity of ethanol, these data illustrate the greater acidity of benzoxazolium compared with benzothiazolium. The relative pK. values of the quaternary salts obtained in acetonitrile when treated with tetrabutylammonium hydroxide are 18.3 and 17.6, respectively (25). Those of 2-methyl 4-phenyl thiazolium and 2.4-dimethyl thiazolium are 20.5 and 21.8 under the same conditions (25). [Pg.32]

Heating of this latter compound with an excess of phenyl isothiocyanate in acetonitrile (65) leads to 2-phenylimino-3-phenyl-4-thioxo-se enazole[3.2-a]tetrahydro-s-triazin (Scheme 61). [Pg.260]

Electron donor molecules are oxidized in solution easily. Eor example, for TTE is 0.33V vs SCE in acetonitrile. Similarly, electron acceptors such as TCNQ are reduced easily. TCNQ exhibits a reduction wave at — 0.06V vs SCE in acetonitrile. The redox potentials can be adjusted by derivatizing the donor and acceptor molecules, and this tuning of HOMO and LUMO levels can be used to tailor charge-transfer and conductivity properties of the material. Knowledge of HOMO and LUMO levels can also be used to choose materials for efficient charge injection from metallic electrodes. [Pg.240]

Preparation. In the laboratory, sulfur tetrafluoride is made by combining SCI2 and NaF suspended in acetonitrile at ca 77°C (106). For commercial production, SF is made by direct combination of sulfur with elemental fluorine (107). Commercial appHcations of SF are limited. It is available from Air Products and Chemicals. [Pg.244]

The P-halo ketone intermediates formed in the foregoing reactions arise from the capture of carbocationic intermediates by halide of the gegenions. In some cases, solvents such as acetonitrile can act as the competing nucleophilic species. For example, P-amido ketones could be obtained by the acylation of alkenes in acetonitrile (172). [Pg.562]

Hydrolysis of TEOS in various solvents is such that for a particular system increases directiy with the concentration of H" or H O" in acidic media and with the concentration of OH in basic media. The dominant factor in controlling the hydrolysis rate is pH (21). However, the nature of the acid plays an important role, so that a small addition of HCl induces a 1500-fold increase in whereas acetic acid has Httie effect. Hydrolysis is also temperature-dependent. The reaction rate increases 10-fold when the temperature is varied from 20 to 45°C. Nmr experiments show that varies in different solvents as foUows acetonitrile > methanol > dimethylformamide > dioxane > formamide, where the k in acetonitrile is about 20 times larger than the k in formamide. The nature of the alkoxy groups on the siHcon atom also influences the rate constant. The longer and the bulkier the alkoxide group, the lower the (3). [Pg.251]

Physical Properties. Ammonium thiocyanate [1762-95-4] NH SCN, is a hygroscopic crystalline soHd which deHquesces at high humidities (375,376). It melts at 149°C with partial isomerization to thiourea. It is soluble in water to the extent of 65 wt % at 25°C and 77 wt % at 60°C. It is also soluble to 35 wt % in methanol and 20 wt % in ethanol at 25°C. It is highly soluble in Hquid ammonia and Hquid sulfur dioxide, and moderately soluble in acetonitrile. [Pg.151]

Uranium pentabromide [13775-16-1], UBr, is unstable toward reduction and the pentaiodide is unknown. Two synthetic methods utilized for the production of UBr involve the oxidation of uranium tetrabromide [13470-20-7], UBr, by Br2 or by bromination of uranium turnings with Br2 in acetonitrile. The metastable pentabromide is isostmctural with the pentachloride, being dimeric with edge-sharing octahedra U2Br2Q. [Pg.332]

The nitrato compound is a weak electrolyte in acetonitrile solution. [Pg.339]


See other pages where In acetonitrile is mentioned: [Pg.360]    [Pg.3048]    [Pg.51]    [Pg.54]    [Pg.63]    [Pg.144]    [Pg.144]    [Pg.47]    [Pg.73]    [Pg.94]    [Pg.101]    [Pg.101]    [Pg.116]    [Pg.200]    [Pg.169]    [Pg.23]    [Pg.24]    [Pg.119]    [Pg.587]    [Pg.54]    [Pg.218]    [Pg.225]    [Pg.253]    [Pg.270]    [Pg.452]    [Pg.470]    [Pg.164]    [Pg.153]    [Pg.338]    [Pg.339]   


SEARCH



Acid-base equilibria in acetonitrile

Acidity in acetonitrile

Anthraquinone in acetonitrile

Benzene in acetonitrile

Clusterization of Water in Ternary Systems with DMSO or Acetonitrile and Chloroform

Formaldehyde Frequencies in Acetonitrile

Ion pairing in acetonitrile

Oxidants in acetonitrile

Products in acetonitrile

Regio- and a-Stereoselective Sialyl Glycoside Syntheses Using Thioglycosides of Sialic Acids in Acetonitrile

Results in Acetonitrile

Sialidation Using 2-Thioglycosides, Xanthates, or Phosphites of Sialic Acids in Acetonitrile

Silsesquioxanes Synthesised in Acetonitrile

Toluene in acetonitrile

© 2024 chempedia.info