Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impedance metal

The new instrument introduced for inspection of multi-layer structures from polymeric and composite metals and materials in air-space industry and this is acoustic flaw detector AD-64M. The principle of its operation based on impedance and free vibration methods with further spectral processing of the obtained signal. [Pg.911]

There are two procedures for doing this. The first makes use of a metal probe coated with an emitter such as polonium or Am (around 1 mCi) and placed above the surface. The resulting air ionization makes the gap between the probe and the liquid sufficiently conducting that the potential difference can be measured by means of a high-impedance dc voltmeter that serves as a null indicator in a standard potentiometer circuit. A submerged reference electrode may be a silver-silver chloride electrode. One generally compares the potential of the film-covered surface with that of the film-free one [83, 84]. [Pg.116]

The kinetics of reactions in which a new phase is formed may be complicated by the interference of that phase with the ease of access of the reactants to each other. This is the situation in corrosion and tarnishing reactions. Thus in the corrosion of a metal by oxygen the increasingly thick coating of oxide that builds up may offer more and more impedance to the reaction. Typical rate expressions are the logarithmic law,... [Pg.283]

Cells need not necessarily contain a reference electrode to obtain meaningfiil results as an example, if the two electrodes in figure A2.4.12 are made from the same metal, M, but these are now in contact with two solutions of the same metal ions, M but with differing ionic activities, which are separated from each other by a glass frit that pennits contact, but impedes diffusion, then the EMF of such a cell, temied a concentration cell, is given by... [Pg.602]

Microwaves from the waveguide are coupled into the resonator by means of a small coupling hole in the cavity wall, called the iris. An adjustable dielectric screw (usually machined from Teflon) with a metal tip adjacent to the iris pennits optimal impedance matching of the cavity to the waveguide for a variety of samples with different dielectric properties. With an appropriate iris setting the energy transmission into the cavity is a maximum and simultaneously reflections are minimized. The optimal adjustment of the iris screw depends on the nature of the sample and is found empirically. [Pg.1560]

Pure metallic cobalt has a soHd-state transition from cph (lower temperatures) to fee (higher temperatures) at approximately 417°C. However, when certain elements such as Ni, Mn, or Ti are added, the fee phase is stabilized. On the other hand, adding Cr, Mo, Si, or W stabilizes the cph phase. Upon fcc-phase stabilization, the energy of crystallographic stacking faults, ie, single-unit cph inclusions that impede mechanical sHp within the fee matrix, is high. [Pg.372]

Fluxes. Fluxes, composed mostly of salts or oxides of metals, serve to protect underlying metal from the air. This prevents the formation of surface oxides that impede fusion and the formation of a strong solder joint. Fluxes may also act to selectively leach elements from the surface of the underlying metal. The result is a surface free of obstacles to fusion, and of a composition readily wetted by the solder. [Pg.487]

Electrochemical Impedance Spectroscopy (EIS) and AC Impedance Many direct-current test techniques assess the overall corrosion process occurring at a metal surface, but treat the metal/ solution interface as if it were a pure resistor. Problems of accuracy and reproducibility frequently encountered in the application of direct-current methods have led to increasing use of electrochemical impedance spectroscopy (EIS). [Pg.2437]

The apphcation of an impressed alternating current on a metal specimen can generate information on the state of the surface of the specimen. The corrosion behavior of the surface of an electrode is related to the way in which that surface responds to this electrochemical circmt. The AC impedance technique involves the application of a small sinusoidal voltage across this circuit. The frequency of that alternating signal is varied. The voltage and current response of the system are measured. [Pg.2437]

In EIS, a potential is applied across a corroding metal in solution, causing current to flow The amount of current depends upon the corrosion reaction on the metal surface and the flow of ions in solution. If the potential is apphed as a sine wave, it will cause harmonics of the current output. The relationship between the apphed potential and current output is the impedance, which is analogous to resistance in a DC circiiit. [Pg.2439]

Carrying power through metal-enclosed bus systems 28/883 0.106 fl/IOOO m and (ii) Impedance Z= - Rl -t-Xf... [Pg.883]

The role of oxygen and hydrogen solutions in the metal catalyst does not appear to be that of impeding the major reactions, but merely to provide a source of these reactants which is uniformly distributed diroughout the catalyst particles, without decreasing die number of surface sites available to methane adsorption. It is drerefore quite possible that a significatit fraction of the reaction takes place by the formation of products between species adsorbed on the surface, and dissolved atoms just below the surface, but in adjacent sites to the active surface sites. [Pg.133]

To achieve pressures intermediate to those achieved by direct contact with a given metal plate, use is often made of alternate layers of various shock impedance materials. Table 3.2 gives a summary of experimental arrangements that have been used in materials studies to achieve pressures from 3 to 80 GPa. [Pg.55]

The mechanism of the asymmetric alkylation of chiral oxazolines is believed to occur through initial metalation of the oxazoline to afford a rapidly interconverting mixture of 12 and 13 with the methoxy group forming a chelate with the lithium cation." Alkylation of the lithiooxazoline occurs on the less hindered face of the oxazoline 13 (opposite the bulky phenyl substituent) to provide 14 the alkylation may proceed via complexation of the halide to the lithium cation. The fact that decreased enantioselectivity is observed with chiral oxazoline derivatives bearing substituents smaller than the phenyl group of 3 is consistent with this hypothesis. Intermediate 13 is believed to react faster than 12 because the approach of the electrophile is impeded by the alkyl group in 12. [Pg.238]


See other pages where Impedance metal is mentioned: [Pg.102]    [Pg.416]    [Pg.289]    [Pg.102]    [Pg.416]    [Pg.289]    [Pg.270]    [Pg.283]    [Pg.283]    [Pg.729]    [Pg.2838]    [Pg.291]    [Pg.308]    [Pg.129]    [Pg.130]    [Pg.432]    [Pg.465]    [Pg.241]    [Pg.515]    [Pg.283]    [Pg.112]    [Pg.146]    [Pg.1015]    [Pg.20]    [Pg.590]    [Pg.692]    [Pg.916]    [Pg.107]    [Pg.108]    [Pg.201]    [Pg.201]    [Pg.399]    [Pg.55]    [Pg.58]    [Pg.59]    [Pg.223]    [Pg.179]    [Pg.262]    [Pg.1165]    [Pg.306]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



© 2024 chempedia.info