Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imines transfer hydrogenations

The TEAF system can be used to reduce ketones, certain alkenes and imines. With regard to the latter substrate, during our studies it was realized that 5 2 TEAF in some solvents was sufficiently acidic to protonate the imine (p K, ca. 6 in water). Iminium salts are much more reactive than imines due to inductive effects (cf. the Stacker reaction), and it was thus considered likely that an iminium salt was being reduced to an ammonium salt [54]. This explains why imines are not reduced in the IPA system which is neutral, and not acidic. When an iminium salt was pre-prepared by mixing equal amounts of an imine and acid, and used in the IPA system, the iminium was reduced, albeit with lower rate and moderate enantioselectivity. Quaternary iminium salts were also reduced to tertiary amines. Nevertheless, as other kinetic studies have indicated a pre-equilibrium with imine, it is possible that the proton formally sits on the catalyst and the iminium is formed during the catalytic cycle. It is, of course, possible that the mechanism of imine transfer hydrogenation is different to that of ketone reduction, and a metal-coordinated imine may be involved [55]. [Pg.1227]

The catalytic hydrosi(ly)lations of other C=X functional groups (X = O, NR) constitute alternative routes to the reduction of aldehydes, ketones, imines and other carbonyl compounds (Scheme 2.9), circumventing the use of molecular hydrogen or occasionally harsh transfer hydrogenation conditions. [Pg.35]

Among the most active catalysts for the asymmetric transfer hydrogenation of prochiral ketones and imines to chiral alcohols and amines are arene-ruthenium(II) amino-alcohol (or primary/ secondary 1,2-diamine)-based systems, with an inorganic base as co-catalyst, developed by Noyori139-141 and further explored by others (Scheme 27).142-145... [Pg.95]

Noyori and coworkers reported well-defined ruthenium(II) catalyst systems of the type RuH( 76-arene)(NH2CHPhCHPhNTs) for the asymmetric transfer hydrogenation of ketones and imines [94]. These also act via an outer-sphere hydride transfer mechanism shown in Scheme 3.12. The hydride transfer from ruthenium and proton transfer from the amino group to the C=0 bond of a ketone or C=N bond of an imine produces the alcohol or amine product, respectively. The amido complex that is produced is unreactive to H2 (except at high pressures), but readily reacts with iPrOH or formate to regenerate the hydride catalyst. [Pg.67]

Palmer and Wills in 1999 reviewed other ruthenium catalysts for the asymmetric transfer hydrogenation of ketones and imines [101]. Gladiali and Mestro-ni reviewed the use of such catalysts in organic synthesis up to 1998 [102]. Review articles that include the use of ruthenium asymmetric hydrogenation catalysts cover the literature from 1981 to 1994 [103, 104], the major contributions... [Pg.67]

Samec and Backvall found that the dinuclear Shvo complex catalyzes the transfer hydrogenation of imines using benzene as solvent and isopropanol as the hydrogen source (Eq. (45)) [76]. These catalytic hydrogenations were typically carried out at 70 °C, and gave >90% yields of the amine in 4 h or less. [Pg.190]

Cyclic imines 8 and 9 are intermediates or models of biologically active compounds and can be reduced with ee-values of 88 to 96% using Ti-ebthi, Ir-bcpm or Ir-binap in the presence of additives (entries 5.7, 5.9), as well as with the transfer hydrogenation catalyst Ru-dpenTs (entries 5.8, 5.10-5.12). As pointed out earlier, Ru-diphosphine-diamine complexes are also effective for imines, and the best results for 7 and 8a were 88% and 79% ee, respectively [36]. Azirines 10 are unusual substrates which could be transfer-hydrogenated with a catalyst prepared in situ from [RuCl2(p-cymene)]2 and amino alcohol L12, with ee-values of 44 to 78% and respectable TOFs of up to 3000 (entry 5.13). [Pg.1203]

Rhodium diphosphine catalysts can be easily prepared from [Rh(nbd)Cl]2 and a chiral diphosphine, and are suitable for the hydrogenation of imines and N-acyl hydrazones. However, with most imine substrates they exhibit lower activities than the analogous Ir catalysts. The most selective diphosphine ligand is bdppsuif, which is not easily available. Rh-duphos is very selective for the hydrogenation of N-acyl hydrazones and with TOFs up to 1000 h-1 would be active enough for a technical application. Rh-josiphos complexes are the catalysts of choice for the hydrogenation of phosphinyl imines. Recently developed (penta-methylcyclopentyl) Rh-tosylated diamine or amino alcohol complexes are active for the transfer hydrogenation for a variety of C = N functions, and can be an attractive alternative for specific applications. [Pg.1211]

Alcohols will serve as hydrogen donors for the reduction of ketones and imi-nium salts, but not imines. Isopropanol is frequently used, and during the process is oxidized into acetone. The reaction is reversible and the products are in equilibrium with the starting materials. To enhance formation of the product, isopropanol is used in large excess and conveniently becomes the solvent. Initially, the reaction is controlled kinetically and the selectivity is high. As the concentration of the product and acetone increase, the rate of the reverse reaction also increases, and the ratio of enantiomers comes under thermodynamic control, with the result that the optical purity of the product falls. The rhodium and iridium CATHy catalysts are more active than the ruthenium arenes not only in the forward transfer hydrogenation but also in the reverse dehydrogenation. As a consequence, the optical purity of the product can fall faster with the... [Pg.1224]

The reduction of imines and iminium salts present a particular difficulty in that those which are N-substituted can exist in different geometrical isomers that are reduced at different rates and with different selectivities. One way to overcome this problem is to use cyclic imines that can exist only as cis isomers. Although these are good substrates, this is not a general solution. The cyclic amines produced by transfer hydrogenation, together with best reported enantiomeric excesses, are listed in Table 35.6. Primary amines are difficult to pre-... [Pg.1232]

A recent development is the transfer hydrogenation of heterocyclic systems such as pyrrole, pyridinium and quinoline systems. Whilst at present the yields and enantioselectivities are modest, further development may improve this situation. For example, 1-methyl-isoquinoline has been reduced to the tetrahydro species and 1-picoline has been reduced to 1-methylpiperidine [86]. Interestingly, these reductions involve alkene as well as imine reduction. [Pg.1234]

Besides Ir-diphosphines, two more catalyst systems have shown promise for industrial application. As mentioned in Section 37.5.2, the Rh-Josiphos-cata-lyzed hydrogenation of unprotected /1-dehydro amino acid derivatives by Merck actually involves the hydrogenation of a C=N and not a C=C bond (see Fig. 37.10) [3, 51]. Noyori s Ru-PP-NN catalyst system seems also suitable for C=N hydrogenation [129], and was successfully applied in a feasibility study by Dow/Chirotech for the hydrogenation of a sulfonyl amidine [130]. Avecia also showed the viability of its CATHy catalyst for the transfer hydrogenation of phosphinyl imines [115] (see Fig. 37.34). [Pg.1311]

TABLE 6-10. Asymmetric Transfer Hydrogenation of a Variety of Imines... [Pg.380]

Keywords Alcohols Alkenes Asymmetric transfer hydrogenation C-alkylation Imines Ketones W-aUcylation Oxidation Reduction Transfer hydrogenation... [Pg.77]


See other pages where Imines transfer hydrogenations is mentioned: [Pg.50]    [Pg.50]    [Pg.118]    [Pg.1536]    [Pg.155]    [Pg.29]    [Pg.29]    [Pg.289]    [Pg.76]    [Pg.347]    [Pg.587]    [Pg.120]    [Pg.25]    [Pg.53]    [Pg.54]    [Pg.60]    [Pg.191]    [Pg.192]    [Pg.713]    [Pg.1211]    [Pg.1215]    [Pg.1216]    [Pg.1234]    [Pg.1240]    [Pg.379]    [Pg.77]    [Pg.83]    [Pg.83]    [Pg.89]    [Pg.107]    [Pg.109]    [Pg.130]   
See also in sourсe #XX -- [ Pg.83 ]

See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Asymmetric Transfer Hydrogenation of Ketones and Imines

Asymmetric transfer hydrogenation imines

Asymmetric transfer hydrogenation of imines

Cyclic imines, transfer hydrogenation

Imine complexes asymmetric transfer hydrogenation

Imines hydrogenation

Imines transfer

Metal-free reduction of imines enantioselective Br0nsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalysts

Transfer Hydrogenation of Acyclic and Cyclic Imines

Transfer Hydrogenation of Ketones and Imines

Transfer hydrogenation of cyclic imines

Transfer hydrogenation of imines

© 2024 chempedia.info