Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imines aldehydes and ketones

Imine, aldehyde, and ketone complexes, unlike olefin complexes, can also adopt an rf configuration (Fig. 10). To our knowledge, rf coordination of an imine has never been confirmed by X-ray crystallography, but there are persuasive arguments for such a structure in the 13C NMR spectra of two Zr imine complexes. The 13C NMR resonances for the imine carbons in 21 [43] and 22 [48] occur far downfield from those observed for zirconaaziridines [20] (Table 2). [Pg.13]

Abstract In the present chapter we discuss transition-metal-catalyzed phosphorus-hydrogen (P-H) bond addition to the triple bond of alkynes and to the double bond of alkenes, dienes, imines, aldehydes and ketones. Main attention is paid to highlight the factors responsible for development of highly efficient catalytic systems and to carry out the addition reaction with high stereo-, regio- and enantioselectivity. [Pg.213]

Enamines derived from ketones are allylated[79]. The intramolecular asymmetric allylation (chirality transfer) of cyclohexanone via its 5-proline ally ester enamine 120 proceeds to give o-allylcyclohexanone (121) with 98% ee[80,8l]. Low ee was observed in intermolecular allylation. Similarly, the asymmetric allylation of imines and hydrazones of aldehydes and ketones has been carried out[82]. [Pg.308]

Primary amines undergo nucleo philic addition to the carbonyl group of aldehydes and ketones to form carbinol amines These carbinolamines dehydrate under the conditions of their formation to give N substituted imines Secondary amines yield enamines... [Pg.927]

Sodium cyanoborohydride is remarkably chemoselective. Reduction of aldehydes and ketones are, unlike those with NaBH pH-dependent, and practical reduction rates are achieved at pH 3 to 4. At pH 5—7, imines (>C=N—) are reduced more rapidly than carbonyls. This reactivity permits reductive amination of aldehydes and ketones under very mild conditions (42). [Pg.304]

A class of nitrogen-containing compounds that was omitted from the section just discussed includes imines and their- derivatives. Irnines are formed by the reaction of aldehydes and ketones with ammonia. Imines can be reduced to primary amines by catalytic hydrogenation. [Pg.934]

Reaction of primary amines with aldehydes and ketones (Section 17.10) Imines are formed by nucleophilic addition of a primary amine to the carbonyl group of an aldehyde or a ketone. The key step is formation of a carbinolamine intermediate, which then dehydrates to the imine. [Pg.936]

Formation of C—Nu The second mode of nucleophilic addition, which often occurs with amine nucleophiles, involves elimination of oxygen and formation of a C=Nu bond. For example, aldehydes and ketones react with primary amines, RNH2, to form imines, R2C=NR. These reactions proceed through exactly the same kind of tetrahedral intermediate as that formed during hydride reduction and Grignard reaction, but the initially formed alkoxide ion is not isolated. Instead, it is protonated and then loses water to form an imine, as shown in Figure 3. [Pg.690]

Primary amines, RNH2, add to aldehydes and ketones to yield imines, R2C=NR. Secondary amines, R2NH, add similarly to yield enamines, R2N—CR=CR2 (ene + amine = unsaturated amine). [Pg.710]

Both primary and secondary amines add to a /S-unsaturated aldehydes and ketones to yield /3-amino aldehydes and ketones rather than the alternative imines. Under typical reaction conditions, both modes of addition occur rapidly. But because the reactions are reversible, they generally proceed with thermodynamic control rather than kinetic control (Section 14.3), so the more stable conjugate addition product is often obtained to the complete exclusion of the less stable direct addition product. [Pg.727]

A range of electron-withdrawing groups on the nitrogen - N-P(0)Ph2, N-tosyl, and N-SES, for example - were tolerated. Imines derived from aromatic, heteroaromatic, unsaturated, and even aliphatic aldehydes and ketones were employed... [Pg.33]

The Knoevenagel reaction between o-hydroxyaryl aldehydes and ketones and substituted acetonitriles affords high yields of 3-substituted coumarins in aqueous alkaline media <96H(43)1257>, whilst 4-hydroxycoumarins have been elaborated to pyrano [3,2-c]benzopyran-5-ones by reaction with aromatic aldehydes and malononitiile <96P148>. The imine (10) resulting from the complex reaction of o-hydroxyacetophenone with malononitrile undergoes a 1,5-tautomeric shift in solution <96JCS(P1)1067>. [Pg.296]

Another SBU with open metal sites is the tri-p-oxo carboxylate cluster (see Section 4.2.2 and Figure 4.2). The tri-p-oxo Fe " clusters in MIL-100 are able to catalyze Friedel-Crafts benzylation reactions [44]. The tri-p-oxo Cr " clusters of MIL-101 are active for the cyanosilylation of benzaldehyde. This reaction is a popular test reaction in the MOF Hterature as a probe for catalytic activity an example has already been given above for [Cu3(BTC)2] [15]. In fact, the very first demonstration of the catalytic potential of MOFs had aheady been given in 1994 for a two-dimensional Cd bipyridine lattice that catalyzes the cyanosilylation of aldehydes [56]. A continuation of this work in 2004 for reactions with imines showed that the hydrophobic surroundings of the framework enhance the reaction in comparison with homogeneous Cd(pyridine) complexes [57]. The activity of MIL-lOl(Cr) is much higher than that of the Cd lattices, but in subsequent reaction rans the activity decreases [58]. A MOF with two different types of open Mn sites with pores of 7 and 10 A catalyzes the cyanosilylation of aromatic aldehydes and ketones with a remarkable reactant shape selectivity. This MOF also catalyzes the more demanding Mukaiyama-aldol reaction [59]. [Pg.81]

A variety of double bonds give reactions corresponding to the pattern of the ene reaction. Those that have been studied from a mechanistic and synthetic perspective include alkenes, aldehydes and ketones, imines and iminium ions, triazoline-2,5-diones, nitroso compounds, and singlet oxygen, 10=0. After a mechanistic overview of the reaction, we concentrate on the carbon-carbon bond-forming reactions. The important and well-studied reaction with 10=0 is discussed in Section 12.3.2. [Pg.869]

Like aldehydes and ketones, the a-hydrogens of acid and acid derivatives are acidic and can be abstracted with base to generate the carban-ions, which can then react with various electrophiles such as halogens, aldehydes, ketones, unsaturated carbonyl compounds, and imines, to give the corresponding products. Many of these reactions can be performed in aqueous conditions. These have been covered in related chapters. [Pg.298]

Amines can react with various carbonyl compounds and their derivatives in aqueous media to give the corresponding imine derivatives. These reactions have been discussed in related chapters. The synthetically most useful reaction of this type is the formation of imines and imine derivatives from the condensation of amines with aldehydes and ketones. Water is an excellent solvent for such condensation reactions. For example, water was found to be an ideal solvent for a high-yield, fast preparation of easily hydrolyzable 2-pyrrolecarbaldimines.23 In the presence of Cu2+, the reaction afforded the corresponding Cu(II) chelates (Eq. 11.19). [Pg.345]

Aldehydes and ketones can react with primary and secondary amines to form Schiff bases, a dehydration reaction yielding an imine (Reaction 45). However, Schiff base formation is a relatively labile, reversible interaction that is readily cleaved in aqueous solution by hydrolysis. The formation of Schiff bases is enhanced at alkaline pH values, but they are still not stable enough to use for crosslinking applications unless they are reduced by reductive amination (see below). [Pg.200]

It has been shown by Varma et al. [61] that reaction of primary and secondary amines with aldehydes and ketones is substantially accelerated by microwaves under solvent-free conditions in the presence of montmorillonite K10 clay, affording high yields of imines and enamines (Eq. 10). [Pg.76]

MW-expedited dehydration reactions using montmorillonite K 10 clay [70] (Schs. 6.20 and 6.21) or Envirocat reagent, EPZG [71] (Schs. 6.20 and 6.21) have been demonstrated in a facile preparation of imines and enamines via the reactions of primary and secondary amines with aldehydes and ketones, respectively. The generation of polar transition state intermediates in such reactions and their enhanced... [Pg.192]

In 2001, the preparation of allylytterbium bromide and the synthesis of homoallylic alcohols using allylytterbium bromide were reported.39 393 Ytterbium metal was found to be activated by a catalytic amount of Mel at 0 °C in THF to produce allylytterbium bromide 66 (Equation (11)). The allylation reaction of a wide range of aromatic aldehydes and ketones proceeded at ambient temperature or less in good to high yields (Table 2). Imines also reacted with allylytterbium bromide to afford homoallyl amines (Table 3). [Pg.416]

Although imine hydrogenation is discussed in greater detail in Chapter 34, it seems appropriate at this point to describe one-pot reductive amination of aldehydes and ketones. The reductive amination of aldehydes and ketones using so-... [Pg.437]

The reactions of allylmetal reagents with carbonyl compounds and imines have been extensively investigated during the last two decades [1], These carbon—carbon bondforming reactions possess an important potential for controlling the stereochemistry in acyclic systems. Allylmetal reagents react with aldehydes and ketones to afford homo-allylic alcohols (Scheme 13.1), which are valuable synthetic intermediates. In particular, the reaction offers a complementary approach to the stereocontrolled aldol process, since the newly formed alkenes may be readily transformed into aldehydes and the operation repeated. [Pg.451]

The opportunity of employing various electrophiles and functionalized diene precursors greatly enhances the synthetic potential of p3-allyltitanocenes. Besides aldehydes and ketones, carbon dioxide [11,15,16], acid chlorides [17], imines [11], nitriles [11], isocyanides [11], and organotin halides [18] react to afford the corresponding allylated products after hydrolysis. Examples are given in Scheme 13.8. [Pg.454]

Reactions with seven- to nine-membered cydic allylic carbonates or halides give the corresponding cydic allyltitanium compounds. These reagents add to aldehydes and imines with moderate to excellent diastereoselectivities [59]. The allyltitanium compound generated from 1-vinylcyclopropyl carbonate reacts regioselectively with aldehydes and ketones at the less substituted carbon atom to provide alkylidenecydopropane derivatives, as shown in Scheme 13.29 [60], The regiochemical outcome of the reaction can be rationalized by assuming an equilibrium between two allyltitanium spedes that favors the less strained tertiary structure. [Pg.468]

The alternative building scheme C2 + Q was used by Petasis and Hu [89], who reacted various aldehydes and ketones with alkenyltitanocene derivatives 172 to obtain the corresponding allenes 173 in high chemical yields (Scheme 2.54). The reaction probably proceeds via titanocene vinylidene complexes, which can also be trapped with alkynes and isocyanides to afford allenylketene imines [90],... [Pg.81]

Aldehydes and ketones can be hy-drodimerized to pinacols (Eq. 2) [34-37]. With aromatic carbonyl compounds, the yields and selectivities are mostly higher than with aliphatic ones. The reaction has been extended to imines (Eq. 2, X = NAr, N-Bn) [38-41] and to heterohydrodimerizations affording, for example, y-lactones (Eq. 3) [42-44]. [Pg.79]


See other pages where Imines aldehydes and ketones is mentioned: [Pg.170]    [Pg.170]    [Pg.2811]    [Pg.2810]    [Pg.381]    [Pg.170]    [Pg.170]    [Pg.2811]    [Pg.2810]    [Pg.381]    [Pg.105]    [Pg.724]    [Pg.181]    [Pg.240]    [Pg.62]    [Pg.872]    [Pg.724]    [Pg.736]    [Pg.99]    [Pg.29]    [Pg.362]    [Pg.232]    [Pg.204]    [Pg.423]    [Pg.322]    [Pg.528]    [Pg.103]    [Pg.50]   
See also in sourсe #XX -- [ Pg.765 ]




SEARCH



Conversion of Imines into Aldehydes and Ketones

Imines and Aldehydes

Imines from aldehydes and ketones

Imines, and

Ketones and aldehydes, distinguishing from reaction with amines to form imine

Primary Amines to Imines and Aldehydes or Ketones

© 2024 chempedia.info