Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imine catalytic enantioselective

Catalytic enantioselective addition to imines, in particular, aza-Diels-Alder reaction 99CRV1069. [Pg.216]

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

Reaction of the enatiopure aldehyde 2-800, obtained from the corresponding imine by enantioselective hydrogenation, with Meldrum s acid (2-801) and the enol ether 2-802a (E/Z= 1 1) in the presence of a catalytic amount of ethylene diammonium diacetate for 4h gave 2-805 in 90 % yield with a 1,3 induction of >24 1. As intermediates, the Knoevenagel product 2-803 and the primarily produced cycloadduct 2-804 can be supposed the latter loses C02 and acetone by reaction with water formed during the condensation step (Scheme 2.178). [Pg.172]

Groger, H., Saida, Y., Sasai, H., Yamaguchi, K., Martens, J., and Shibasaki, M., A new and highly efficient asymmetric route to cyclic a-amino phosphonates the first catalytic enantioselective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes, /. Am. Chem. Soc., 120, 3089, 1998. [Pg.110]

As far as catalytic enantioselective cycloadditions to imines are concerned, the only non-Zr-catalyzed process is a Cu-catalyzed protocol reported by Jorgensen (Eq. 6.22) [112]. It should be noted, however, that high enantioselectivities are attained only with highly substituted versions of the Danishefsky diene. [Pg.216]

Snapper and Hoveyda reported a catalytic enantioselective Strecker reaction of aldimines using peptide-based chiral titanium complex [Eq. (13.11)]. Rapid and combinatorial tuning of the catalyst structure is possible in their approach. Based on kinetic studies, bifunctional transition state model 24 was proposed, in which titanium acts as a Lewis acid to activate an imine and an amide carbonyl oxygen acts as a Bronsted base to deprotonate HCN. Related catalyst is also effective in an enantioselective epoxide opening by cyanide "... [Pg.389]

The last five years have witnessed explosive advances in the development of catalytic enantioselective alkylation of imines. This chapter collects some of the important advances that have taken place during the past few years in catalytic enantioselective alkylation of imines. [Pg.108]

Catalytic Enantioselective Alkylation of Imines with Organozinc Reagents... [Pg.108]

In 1998, Yamamoto et al. reported the first catalytic enantioselective allylation of imines with allyltributylstannane in the presence of a chiral 7i-allylpalladium complex 23 (Scheme 9) [15]. The imines derived from aromatic aldehydes underwent the allylation with high ee values. Unfortunately, the allylation reaction of aliphatic imines resulted in modest enantioselectivities. They proposed that a bis-Jt-allylpalladium complex is a reactive intermediate for the allylation and reacts with imines as a nucleophile. The bis-Jt-allylpalladium complex seemed the most likely candidate for the Stille coupling [16]. Indeed, the Stille coupling reaction takes place in the presence of triphenylphosphine even if imines are present, whereas the allylation of imines occurs in the absence of the phosphine [17]. They suggested the phosphine ligand played a key role in controlling the... [Pg.111]

Kobayashi and colleagues developed a catalytic enantioselective method for the allylation of imines 24 by substituted allylstannanes 25 with chiral zirconium catalysts 26 and 27 prepared from zirconium alkoxides and l,l -bi-2-naph-thol derivatives (Scheme 10) [19]. The allylation of aromatic imines 24 with 25 afforded the corresponding homoallylic amines 28 in good yields (71-85%) with high stereoselectivities (87-99% ee). [Pg.112]

In 1997, Kobayashi and colleagues reported the first truly catalytic enantioselective Mannich-type reactions of aldimines 24 with silyl enolates 37 using a novel chiral zirconium catalyst 38 prepared from zirconium (IV) fert-butoxide, 2 equivalents of (R)-6,6 -dibromo-l,l -bi-2-naphthol, and N-methylimidazole (Scheme 13) [27, 28], In addition to imines derived from aromatic aldehydes, those derived from heterocyclic aldehydes also worked well in this reaction, and good to high yields and enantiomeric excess were obtained. The hydroxy group of the 2-hydroxyphenylimine moiety, which coordinates to the zirconium as a bidentate ligand, is essential to obtain high selectivity in this method. [Pg.114]

In 1997, the first truly catalytic enantioselective Mannich reactions of imines with silicon enolates using a novel zirconium catalyst was reported [9, 10]. To solve the above problems, various metal salts were first screened in achiral reactions of imines with silylated nucleophiles, and then, a chiral Lewis acid based on Zr(IV) was designed. On the other hand, as for the problem of the conformation of the imine-Lewis acid complex, utilization of a bidentate chelation was planned imines prepared from 2-aminophenol were used [(Eq. (1)]. This moiety was readily removed after reactions under oxidative conditions. Imines derived from heterocyclic aldehydes worked well in this reaction, and good to high yields and enantiomeric excesses were attained. As for aliphatic aldehydes, similarly high levels of enantiomeric excesses were also obtained by using the imines prepared from the aldehydes and 2-amino-3-methylphenol. The present Mannich reactions were applied to the synthesis of chiral (3-amino alcohols from a-alkoxy enolates and imines [11], and anti-cc-methyl-p-amino acid derivatives from propionate enolates and imines [12] via diastereo- and enantioselective processes [(Eq. (2)]. Moreover, this catalyst system can be utilized in Mannich reactions using hydrazone derivatives [13] [(Eq. (3)] as well as the aza-Diels-Alder reaction [14-16], Strecker reaction [17-19], allylation of imines [20], etc. [Pg.144]

It was also reported that diastereo- and enantioselective Mannich reactions of activated carbonyl compounds with a-imino esters were catalyzed by a chiral Lewis acid derived from Cu(OTf)2 and a bisoxazoline (BOX) ligand [31] [(Eq. (6)]. Catalytic enantioselective addition of nitro compounds to imines [32], and aza-Henry reactions of nitronates with imines [33] also proceeded under similar reaction conditions. [Pg.146]

As the follow up to our studies in connection to the development of Ti-cat-alyzed cyanide additions to meso epoxides [4], we developed the corresponding catalytic enantioselective additions to imines [5]. A representative example is shown in Scheme 1 chiral non-racemic products maybe readily converted to the derived cx-amino acids (not available through catalytic asymmetric hydrogenation methods). In these studies, we further developed and utilized the positional optimization approach effected by examination of parallel libraries of amino acid-based chiral ligands (e.g., 1 and 2). Thus, the facile modularity of these ligands and their ease of synthesis were further exploited towards the development of a new catalytic enantioselective method that delivers various ar-... [Pg.172]

The ester enolate-imine condensation, also called Gilman-Speeter reaction, is another well-accepted method for (3-lactam synthesis (Scheme 4) [67-69]. In 1997, Tomioka reported the first example of a direct catalytic enantioselective synthesis of (3-lactam by using this method [70]. The active reagent is a ternary complex (comprising LDA, the ester enolate, and tridentate amino diether), which finally affords the (3-lactam compounds in high yields and good ee values. [Pg.266]

Having optimized the catalytic enantioselective phase-transfer alkylation system, the group explored the scope and limitations. A variety of electrophiles were reacted with the benzophenone imine glycine tert-butyl ester 1 catalyzed by 5 mol% of the selected chiral dimeric PTCs, benzene-linked-l,3-dimeric PTC 37, 2 -F-benzene-linked-1,3-dimeric PTC 41, and naphthalene-linked-2,7-dimeric PTC 39, at reaction temperatures of 0°C or — 20 °C (Scheme 4.8). [Pg.60]

Catalytic enantioselective addition reactions of alkyllithium or -zinc reagents to preformed imines have been described [34, 35]. Hoveyda, Snapper, and co-workers have described a direct three-component variant of this reaction [36]. Accordingly, several chiral, non-racemic aromatic as well as aliphatic amines were synthesized by the reaction of the corresponding aldehydes, o-anisidine 132, and alkylzincs using a Zr catalyst with a chiral peptide ligand 133 (Scheme 9.24). [Pg.293]

Another fact is the quite impressive functional group selectivity of this method. Because of their greater reactivity imines can be reduced in the presence of ketones, although chiral Ru-complex 9 catalyzes the transfer hydrogenation of ketones. Besides this catalytic enantioselective reduction of imines others are known.8... [Pg.107]

Another important means of mediation of metal-free catalytic enantioselective Mannich-type reactions is via electrophilic activation of the preformed imines by chiral Bronstedt acids [7, 8, 46], By using this strategy Terada and coworkers performed chiral phosphoric acid-catalyzed direct asymmetric Mannich-type reactions between Boc-protected imines and acetoacetone that furnished aryl /3-amino... [Pg.370]

Kleinmann EF (1991) In Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 2. Pergamon, Oxford, p 893 Knowles WS (2002) Angew Chem Int Ed Engl 41 1998 Kobayashi S, Ishitani H (1999) Catalytic enantioselective addition to imines. Chem Rev 99 1069-1094... [Pg.249]

Kobayashi S, Ishitani H (2000) Novel binuclear chiral zirconium catalysts used in enantioselective strecker reactions. Chirality 12 540-543 Kobayashi S, Ishitani H, Nagayama S (1995) Synthesis 1995 1195 Kobayashi S, Ishitani H, Ueno M (1998) J Am Chem Soc 120 431 Kobayashi S, Kobayashi J, Ishitani H, Ueno M (2002) Catalytic enantioselective addition of propionate units to imines an efficient synthesis of anti-alpha-methyl-beta-amino acid derivatives. Chem Eur J 8 4185 1190 Krohn K, Kirst HA, Maag H (eds) (1993) Antibiotics and antiviral compounds. VCH, Weinheim... [Pg.249]

Kobayashi and co-workers. used zirconium-based bromo-BINOL complex for the catalytic enantioselective Mannich-type reaction. The o-hydroxyphenyl imine 3.36 chelates the Zr(IV)(BrBINOL)2 to form the activated chiral Lewis acid complex A. The ketone acetal 3.37 reacts with the Lewis acid complex A to give the complex B. The silyl group is then transferred to the 3-amino ester to form the product 3.38 and the catalyst Zr(BrBINOL)2 is regenerated, which is ready for binding with another imine molecule (Scheme 3.16). [Pg.129]

Even the very efficient enantioselective catalysts used in organozinc addition reactions to carbonyl compounds failed to catalyze the corresponding addition reactions to nonactivated imines such as A-silyl-, A-phenyl-, or iV-benzyl-imines. However, enantioselective additions of diaUcylzinc compounds to more activated imines, like iV-acyl- or iV-phosphinoyl-imines, in the presence of catalytic or stoichiometric amounts of chiral (see Chiral) aminoalcohols, have been recently reported. For example, in presence of 1 equiv of (A,A-dibutylnorephedrine) (DBNE) diethylzinc reacts with masked A-acyl imines like A-(amidobenzyl)benzotriazoles, to give chiral A-(l-phenylpropyl)amides with up to 76% e.e. (equation 68). [Pg.5238]

Kobayashi, S. Ishitani, H. Catalytic Enantioselective Addition to Imines, Chem. Rev 1999, 99, 1069-1094. [Pg.5]

Catalytic Enantioselective Hydrophosphonylation of Aldehydes. LLB catalyzes the hydrophosphonylations of aldehydes with dimethyl phosphite to afford a-hydroxy phosphonates with high optical purity (eq 7). In some cases, the aldehyde needs to be added slowly to the mixture of LLB and phosphite in THF. For some aromatic aldehydes, another catalyst, Li[Al(binol)2] (ALB), gives better results. Imines also react with dimethyl phosphite in a highly enantioselective manner when potassium-based complexes (K3[Ln(binol)3], LnPB) are used as catalysts. ... [Pg.374]

Other organometallic compounds, including aUylic stannanes, allylic samarium, allylic germanium, and allylic indium compounds add to aldi-mines in the same manner. Aryltrialkylstannanes also add the aryl group to Al-tosyl imines using a rhodium catalyst and sonication. Catalytic enantioselective addition reactions are well known, including reactions in an ionic liquid.Allylic... [Pg.1332]


See other pages where Imine catalytic enantioselective is mentioned: [Pg.320]    [Pg.201]    [Pg.120]    [Pg.122]    [Pg.71]    [Pg.13]    [Pg.110]    [Pg.110]    [Pg.111]    [Pg.394]    [Pg.395]    [Pg.167]    [Pg.150]    [Pg.107]    [Pg.107]    [Pg.111]    [Pg.122]    [Pg.245]    [Pg.1348]    [Pg.1348]    [Pg.848]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Catalytic Enantioselective Additions of Alkylzinc Reagents to Imines

Catalytic enantioselective addition to imin

Enantioselection imines

Enantioselectivity imine

Enantioselectivity imines

© 2024 chempedia.info