Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imine additions Diels-Alder reaction

Ab initio calculations on aza-Diels-Alder reactions of electron-deficient imines with buta-l,3-diene show that these reactions are HOMO (diene)-LUMO(dienophile)-controlled and that electron-deficient imines should be more reactive than alkyl-or aryl-imines. The Diels-Alder reaction of r-butyl 2//-azirine-3-carboxylate (80) proceeds with high diastereoselectivity with electron-rich dienes (81) (Scheme 28). The hetero-Diels-Alder additions of imines with sterically demanding dienes yield perhydroquinolines bearing an angular methyl group. The asymmetric hetero-Diels-Alder reaction between alkenyloxazolines and isocyanates produces diastereometri-cally pure oxazolo[3,2-c]pyrimidines. °... [Pg.469]

Lanthanide(ni) on ion exchange resins catalyse Mukaiyama aldol reactions in aqueous media, acetalisations, additions of silyl enol ethers to imines, saz-Diels-Alder reactions and the ringopening of epoxides with alcohols as depicted in Scheme 3.6.7. [Pg.240]

Catalytic enantioselective addition to imines, in particular, aza-Diels-Alder reaction 99CRV1069. [Pg.216]

In addition, the same group has used copper complexes of these ligands as efficient catalysts for enantioselective Cu-catalysed aza-Diels-Alder reactions of A-sulfonyl imines with Danishefsky s dienes, providing the corresponding six-membered heterocycles with enantioselectivities of up to 80% ee. ... [Pg.198]

To date, the most frequently used ligand for combinatorial approaches to catalyst development have been imine-type ligands. From a synthetic point of view this is logical, since imines are readily accessible from the reaction of aldehydes with primary or secondary amines. Since there are large numbers of aldehydes and amines that are commercially available the synthesis of a variety of imine ligands with different electronic and steric properties is easily achieved. Additionally, catalysts based on imine ligands are useful in a number of different catalytic processes. Libraries of imine ligands have been used in catalysts of the Strecker reaction, the aza-Diels-Alder reaction, diethylzinc addition, epoxidation, carbene insertions, and alkene polymerizations. [Pg.439]

The ionic liquid [bmim][BF ] is known to catalyze the aza-Diels-Alder reaction in the synthesis of pyrano- and furanoquinolines [190]. This reaction was also catalyzed by the enantiopure bis-imidazolinium salt 67 in 67% yield with an endo. exo ratio of 60 40 (Scheme 69) [191]. The product was obtained as a race-mate. In addition the aza-Diels-Alder reaction with imines and Danishefsky s diene was catalyzed by the salt 67 giving racemic product. The salt and its analogues could be easily prepared via the oxidation of the corresponding aminals [192]. Investigation of the influence of the counter anion in achiral C2-substituted imidazolinium salts, which can be also described as 4,5-dihydroimidazolium or saturated imidazolium salts, in the aza-Diels-Alder reaction showed, that the catalytic activity increased, the more lipophilic the counter anion and therefore the more hydrophobic the salt was [193]. [Pg.381]

In 2006, Akiyama and coworkers established an asymmetric Brpnsted acid-catalyzed aza-Diels-Alder reaction (Scheme 36) [59]. Chiral BINOL phosphate (R)-3o (5 mol%, R = 2,4,6- Pr3-CgH2) bearing 2,4,6-triisopropylphenyl groups mediated the cycloaddition of aldimines 94 derived from 2-amino-4-methylphenol with Danishefsky s diene 95 in the presence of 1.2 equivalents of acetic acid. Piperidinones 96 were obtained in good yields (72 to >99%) and enantioselectivi-ties (76-91% ee). While the addition of acetic acid (pK= 4.8) improved both the reactivity and the selectivity, the use of benzenesulfonic acid (pK= -6.5) as an additive increased the yield, but decreased the enantioselectivity. A strong achiral Brpnsted acid apparently competes with chiral phosphoric acid 3o for the activation of imine 94 and catalyzes a nonasymmetric hetero-Diels-Alder reaction. The role of acetic acid remains unclear. [Pg.424]

Imidates, rearrangement of, 14, 1 Imines, additions of allyl, allenyl, propargyl stannanes, 64, 1 additions of cyanide, 70, 1 as dienophiles, 65, 2 synthesis, 70, 1 Iminium ions, 39, 2 65, 2 Imino Diels-Alder reactions, 65, 2 Indoles, by Nenitzescu reaction, 20, 3 by reaction with TosMIC, 57, 3 Ionic hydrogenation, 71, 1 Isocyanides, in the Passerini reaction, 65, 1... [Pg.590]

The groups of Rueping [25] and Gong [26] have developed the aza-hetero-Diels-Alder reaction of aryl imines and cyclohexenone to give isoquinuclidines in good endojexo selectivities and high yields and ee s by 1 and la, respectively (Scheme 5.13). In the presence of acid, cyclohexenone enolizes to afford the dienol which subsequently undergoes a Mannich reaction with the protonated aldimine followed by intramolecular aza-Michael addition to produce the formal Diels-Alder adducts. [Pg.83]

In the Diels-Alder reaction between Danishefsky s diene and N-aryl imines derived from o-hydroxyaniline catalyzed by Ih, Akiyama observed substantial increases in chemical yield and enantioselectivty by the addition of stoichiometric amounts of acetic acid (Scheme 5.14) [27]. The authors concede that the role of the protic acid is unclear. [Pg.83]

One approach to tetrahydropyridinones is the Lewis acid mediated hetero-Diels-Alder reaction of electron-rich dienes with polystyrene-bound imines (Entries 3 and 4, Table 15.23). The Ugi reaction of 5-oxo carboxylic acids and primary amines with support-bound isonitriles has been used to prepare piperidinones on insoluble supports (Entry 5, Table 15.23). Entry 6 in Table 15.23 is an example of the preparation of a 4-piperidinone by amine-induced 3-elimination of a resin-bound sulfinate followed by Michael addition of the amine to the newly generated divinyl ketone. The intramolecular Pauson-Khand reaction of propargyl(3-butenyl)amines, which yields cyclopenta[c]pyridin-6-ones, is depicted in Table 12.4. [Pg.431]

The aza-Diels-Alder reaction of Danishefsky s diene with imines provides a convenient method for the synthesis of 2-substituted 2,3-dihydro-4-pyridones, a compound class that has important synthetic applications. Kobayashi and co-workers have studied the reaction in detail using ytterbium (III) triflate as the Lewis acid30. Although the reaction is often run at low temperature (—78°C to 0°C) for a number of hours, we have found that the reaction also worked well at elevated temperatures (150°C) in the microwave for a few minutes (J. Westman and A. Hurynowics, unpublished results) (see Scheme 5.15). The imines could either be preformed prior to the addition of the Danishefsky s diene or the reaction could be performed as a multi-component protocol, where all components were added at once. [Pg.114]

Perhaps the most useful part of the reported synthesis is the facile preparation of (—)-pyrimidoblamic acid (12 Scheme 3). A key to this synthesis is the preparation of the fully substituted pyrimidine 8. This was done by a one-pot inverse electron demand Diels-Alder reaction between the symmetrical triazine 7 and prop-1-ene-1,1-diamine hydrochloride, followed by loss of ammonia, tautomerization, and loss of ethyl cyanoformate through a retro-Diels-Alder reaction. Selective low-temperature reduction of the more electrophilic C2 ester using sodium borohydride afforded 9, the aldehyde derivative of which was condensed with 7V -Boc-protected (3-aminoalaninamide to give the imine 10. Addition of the optically active A-acyloxazolidinone as its stannous Z-enolate provided almost exclusively the desired anti-addition product 11, which was converted into (—)-pyrimidoblamic acid (12). Importantly, this synthesis confirmed Umezawa s assignment of absolute configuration at the benzylic center. [Pg.344]

The chiral organocopper compound (186) adds diastereoselectively to 2-methyl-2-cyclopentenone, allowing the preparation of optically active steroid CD-ring building blocks (Scheme 68).202-204 A related method was applied to a synthesis of the steroid skeleton via an intramolecular (transannular) Diels-Alder reaction of a macrocyclic precursor.203 Chiral acetone anion equivalents based on copper azaeno-lates derived from acetone imines were shown to add to cyclic enones with good selectivity (60-80% ee, after hydrolysis).206-208 Even better ee values are obtained with the mixed zincate prepared from (187) and dimethylzinc (Scheme 69). Other highly diastereoselective but synthetically less important 1,4-additions of chiral cuprates to prochiral enones were reported.209-210... [Pg.227]

In contrast to the hydrazones mentioned above, a,/ -unsaturated N -sulfonyl imines react as electron-deficient diene component in aza Diels-Alder reactions. In addition to several investigations dealing with their intermolecular cycloadditions under thermal and under high pressure conditions [231-234], Boger s... [Pg.50]

CHAPTER 7 CHAPTER 8 CHAPTER 10 CHAPTER 11 CHAPTER 15 CHAPTER 17 CHAPTER 18 Acid-Catalyzed Dehydration of an Alcohol 313 Electrophilic Addition to Alkenes 330 Grignard Reactions 443 The Williamson Ether Synthesis 500 The Diels-Alder Reaction 684 Electrophilic Aromatic Substitution 757 Nucleophilic Additions to Carbonyl Groups 841 Formation of Imines 851 Formation of Acetals 856... [Pg.1292]


See other pages where Imine additions Diels-Alder reaction is mentioned: [Pg.415]    [Pg.316]    [Pg.438]    [Pg.190]    [Pg.204]    [Pg.309]    [Pg.142]    [Pg.101]    [Pg.107]    [Pg.337]    [Pg.146]    [Pg.147]    [Pg.50]    [Pg.153]    [Pg.455]    [Pg.455]    [Pg.503]    [Pg.131]    [Pg.7]    [Pg.266]    [Pg.250]    [Pg.291]    [Pg.567]    [Pg.175]   
See also in sourсe #XX -- [ Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 , Pg.105 ]




SEARCH



Addition reactions Diels-Alder reaction

Addition reactions imines

Diels-Alder addition

Diels-Alder addition reaction

Diels-Alder reactions additives

Imine additions

Imine additions hetero-Diels-Alder reaction

Imine reaction

Imines, Diels-Alder reaction

Imines, additions

Imines, reactions

© 2024 chempedia.info