Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis reaction products

Figure 5 X-ray diffraction pattern for hydrolysis reaction products obtained with the ultrasonic nozzle... Figure 5 X-ray diffraction pattern for hydrolysis reaction products obtained with the ultrasonic nozzle...
The copolymers were obtained by alkaline hydrolysis of 2% solutions of polyacrylamide at 60 C In either 0.1 H or 1 fl sodium hydroxide using hydrolysis times of 10 min to 24 h. The hydrolysis reaction products were neutralized to pH 7.5 with hydrochloric acid and dialyzed. [Pg.239]

The simple hydrolysis reaction products of organotrichlorosilanes were studied by K. Andrianov in the late 1930 s [36]. These were the first examples of silsesquioxane or silicone T-resins. (J. F. Hyde was the first to directly polymerize and study linear diorganosiloxane polymers.) In the early 1950 s, S. Brady and coworkers at Dow Coming produced a series of low molecular weight phenylsilsesquioxane-alkylsilsesquioxane copolymers of low molecular weight and high hydroxyl functionality [37]. A typical structure is shown below. [Pg.606]

The experimental procedure to be followed depends upon the products of hydrolysis. If the alcohol and aldehyde are both soluble in water, the reaction product is divided into two parts. One portion is used for the characterisation of the aldehyde by the preparation of a suitable derivative e.g., the 2 4-dinitrophenylhydrazone, semicarbazone or di-medone compound—see Sections 111,70 and 111,74). The other portion is employed for the preparation of a 3 5-dinitrobenzoate, etc. (see Section 111,27) it is advisable first to concentrate the alcohol by dis tillation or to attempt to salt out the alcohol by the addition of solid potassium carbonate. If one of the hydrolysis products is insoluble in the reaction mixture, it is separated and characterised. If both the aldehyde and the alcohol are insoluble, they are removed from the aqueous layer separation is generally most simply effected with sodium bisulphite solution (compare Section Ill,74),but fractional distillation may sometimes be employed. [Pg.328]

In general, however, the diacetyl derivatives are unstable in the presence of water, undergoing hydrolysis to the mono-acetyl compound, so that when they (or a mixture of mono- and di-acetyl derivatives) are crystallised from an aqueous solvent, e.g., dilute alcohol, only the mono-acetyl derivative is obtained. A further disadvantage of the use of acetic anhydride in the absence of a solvent is that all the impm-ities in the amine are generally present in the reaction product. Heavily substituted amines, t.g., 2 4 6-tribromoaniline, react extremely slowly with acetic anhydride, but in the presence of a few drops of concentrated sulphuric acid as catalyst acetylation occurs rapidly, for example ... [Pg.576]

Hydrolysis of methyl m-nitrobenzoate to m-nitrobenzoic acid. Place 90 -5 g. of methyl m-nitrobenzoate and a solution of 40 g. of sodium hydroxide in 160 ml. of water in a 1-htre round-bottomed flask equipped with a reflux condenser. Heat the mixture to boiling during 5-10 minutes or until the ester has disappeared. Dilute the reaction mixture with an equal volume of water. When cold pour the diluted reaction product, with vigorous stirring, into 125 ml. of concentrated hydrochloric acid. Allow to cool to room temperature, filter the crude acid at the pump and wash it with a httle water. Upon drying at 100°, the crude m-nitrobenzoic acid, which has a pale brownish colour, weighs 80 g. and melts at 140°, Recrystalhsation from 1 per cent, hydrochloric acid afibrds the pure acid, m.p. 141°, as a pale cream sohd the loss of material is about 5 per cent. [Pg.770]

Hydrolysis may be effected with 10-20 per cent, sodium hydroxide solution (see p-Tolunitrile and Benzonitrile in Section IV,66) or with 10 per cent, methyl alcoholic sodium hydroxide. For diflScult cases, e.g., a.-Naphthoniirile (Section IV,163), a mixture of 50 per cent, sulphuric acid and glacial acetic acid may be used. In alkahne hydrolysis the boiling is continued until no more ammonia is evolved. In acid hydro-lysis 2-3 hours boiling is usually sufficient the reaction product is poured into water, and the organic acid is separated from any unchanged nitrile or from amide by means of sodium carbonate solution. The resulting acid is identified as detailed in Section IV,175. [Pg.805]

Chemical degradation (141), whether thermally or photo-iaduced, primarily results from depolymerization, oxidations, and hydrolysis. These reactions are especially harmful ia objects made from materials that coataia ceUulose, such as wood, cottoa, and paper. The chemistry of these degradation processes is quite complex, and an important role can be played by the reaction products, such as the acidic oxidation products which can catalyze hydrolysis. [Pg.426]

The principal reactions are reversible and a mixture of products and reactants is found in the cmde sulfate. High propylene pressure, high sulfuric acid concentration, and low temperature shift the reaction toward diisopropyl sulfate. However, the reaction rate slows as products are formed, and practical reactors operate by using excess sulfuric acid. As the water content in the sulfuric acid feed is increased, more of the hydrolysis reaction (Step 2) occurs in the main reactor. At water concentrations near 20%, diisopropyl sulfate is not found in the reaction mixture. However, efforts to separate the isopropyl alcohol from the sulfuric acid suggest that it may be partially present in an ionic form (56,57). [Pg.107]

Expect some product contamination if feed components can react with water, eg, ester will be partially hydrolyzed to acid and alcohol fate of reaction product species depends on above rules, eg, methanol from methyl ester hydrolysis probably not stripped out of bottoms stream. [Pg.452]

The increased acidity of the larger polymers most likely leads to this reduction in metal ion activity through easier development of active bonding sites in siUcate polymers. Thus, it could be expected that interaction constants between metal ions and polymer sdanol sites vary as a function of time and the sihcate polymer size. The interaction of cations with a siUcate anion leads to a reduction in pH. This produces larger siUcate anions, which in turn increases the complexation of metal ions. Therefore, the metal ion distribution in an amorphous metal sihcate particle is expected to be nonhomogeneous. It is not known whether this occurs, but it is clear that metal ions and siUcates react in a complex process that is comparable to metal ion hydrolysis. The products of the reactions of soluble siUcates with metal salts in concentrated solutions at ambient temperature are considered to be complex mixtures of metal ions and/or metal hydroxides, coagulated coUoidal size siUca species, and siUca gels. [Pg.7]

Carboxyhc acid ester, carbamate, organophosphate, and urea hydrolysis are important acid/base-catalyzed reactions. Typically, pesticides that are susceptible to chemical hydrolysis are also susceptible to biological hydrolysis the products of chemical vs biological hydrolysis are generally identical (see eqs. 8, 11, 13, and 14). Consequentiy, the two types of reactions can only be distinguished based on sterile controls or kinetic studies. As a general rule, carboxyhc acid esters, carbamates, and organophosphates are more susceptible to alkaline hydrolysis (24), whereas sulfonylureas are more susceptible to acid hydrolysis (25). [Pg.218]

The presence of catalyst residues, such as alkali hydroxide or alkali acetate, a by-product of the hydrolysis reaction, is known to decrease the thermal stability of poly(vinyl alcohol). Transforming these compounds into mote inert compounds and removal through washing are both methods that have been pursued. The use of mineral acids such as sulfuric acid (258), phosphoric acid (259), and OfXv o-phosphotic acid (260) has been reported as means for achieving increased thermal stability of the resulting poly(vinyl alcohol). [Pg.484]

Once in the soil solution, urea—formaldehyde reaction products are converted to plant available nitrogen through either microbial decomposition or hydrolysis. Microbial decomposition is the primary mechanism. The carbon in the methylene urea polymers is the site of microbial activity. Environmental factors that affect soil microbial activity also affect the nitrogen availabiUty of UF products. These factors include soil temperature, moisture, pH, and aeration or oxygen availabiUty. [Pg.131]

Diethyl ether is the principal by-product of the reaction of ethyl alcohol with diethyl sulfate. Various methods have been proposed to diminish its formation (70—72), including separation of diethyl sulfate from the reaction product. Diethyl sulfate not only causes an increase in ether formation but is also more difficult to hydroly2e to alcohol than is ethyl hydrogen sulfate. The equiUbrium constant for the hydrolysis of ethyl hydrogen sulfate is independent of temperature, and the reaction rate is proportional to the hydrogen ion concentration (73—75). [Pg.404]

Chirazymes. These are commercially available enzymes e.g. lipases, esterases, that can be used for the preparation of a variety of optically active carboxylic acids, alcohols and amines. They can cause regio and stereospecific hydrolysis and do not require cofactors. Some can be used also for esterification or transesterification in neat organic solvents. The proteases, amidases and oxidases are obtained from bacteria or fungi, whereas esterases are from pig liver and thermophilic bacteria. For preparative work the enzymes are covalently bound to a carrier and do not therefore contaminate the reaction products. Chirazymes are available form Roche Molecular Biochemicals and are used without further purification. [Pg.520]

Ethyl aluminum dichloride (EADC) is used in the rnanufacmre of certain catalysts for making LDPE. Occasionally, the batch operation involving the catalyst production results in an off-spec lot. This off-spec lot is washed from the reactor (impregantor) with water and hexane, and must be sent to a waste disposal facility. The facility treats this waste in a hydrolysis reaction (i.e., with water and mild agitation). If the reaction is exothermic, what are the potential air pollution and fire problems associated with the waste treatment ... [Pg.187]

Residual aromatic ether concentrations are determined from the absorbance at 278 mfi of the crude reduction products in methanol solution. Steroidal ether concentrations of 1 mg/ml are employed. The content of 1,4-dihydro compound is determined, when possible, by hydrolysis to the a, -unsaturated ketone followed by ultraviolet analysis. A solution of the crude reaction product (usually 0.01 mg/ml cone) in methanol containing about 1/15 its volume of water and concentrated hydrochloric acid respectively is kept at room temperature for 2 to 4 hr. The absorbance at ca. 240 mfi is measured and, from this, the content of 1,4-dihydro compound can be calculated. Longer hydrolysis times do not increase the absorbance at 240 mp.. [Pg.50]

Various combinations of Rf and R (equation 36) have been studied [39, 72, 73, 74, 75], and it appears that the stability of the lithium salt of the hemiketal is the major factor in determming the reaction products formed via paths A, B, or C in equation 37 Other important factors that affect the course of the reacbon are (1) thermal stability of the perfluoroalkyllithium compounds, (2) reaction temperature, (3) mode of addition of the reactants, (4) stenc hindrance, (5) nature of the Y group (in equation 36), and (6) temperature at which the reaction is terminated by acid hydrolysis... [Pg.664]

An interesting variant of this reaction is the formation of 2-thiaadamantane-4,8-dione by hydrolysis of the reaction product of the bispyrrolidine enamine of bicyclo[3.3.1]nonane-2,6-dione with sulfur dichloride (106). [Pg.149]


See other pages where Hydrolysis reaction products is mentioned: [Pg.236]    [Pg.212]    [Pg.148]    [Pg.95]    [Pg.47]    [Pg.41]    [Pg.123]    [Pg.166]    [Pg.236]    [Pg.212]    [Pg.148]    [Pg.95]    [Pg.47]    [Pg.41]    [Pg.123]    [Pg.166]    [Pg.547]    [Pg.249]    [Pg.113]    [Pg.427]    [Pg.358]    [Pg.517]    [Pg.374]    [Pg.135]    [Pg.26]    [Pg.254]    [Pg.334]    [Pg.339]    [Pg.134]    [Pg.302]    [Pg.5]    [Pg.824]    [Pg.824]    [Pg.834]    [Pg.565]    [Pg.530]    [Pg.67]   
See also in sourсe #XX -- [ Pg.513 ]




SEARCH



Carboxylic acid hydrolysis reaction product

Hydrolysis products

Hydrolysis reactions

Processes and Products Based on Hydrolysis Reactions

© 2024 chempedia.info