Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis products, effect

The experimental procedure to be followed depends upon the products of hydrolysis. If the alcohol and aldehyde are both soluble in water, the reaction product is divided into two parts. One portion is used for the characterisation of the aldehyde by the preparation of a suitable derivative e.g., the 2 4-dinitrophenylhydrazone, semicarbazone or di-medone compound—see Sections 111,70 and 111,74). The other portion is employed for the preparation of a 3 5-dinitrobenzoate, etc. (see Section 111,27) it is advisable first to concentrate the alcohol by dis tillation or to attempt to salt out the alcohol by the addition of solid potassium carbonate. If one of the hydrolysis products is insoluble in the reaction mixture, it is separated and characterised. If both the aldehyde and the alcohol are insoluble, they are removed from the aqueous layer separation is generally most simply effected with sodium bisulphite solution (compare Section Ill,74),but fractional distillation may sometimes be employed. [Pg.328]

In another study of workers exposed to UF, the review of two years of foUow-up medical data on 31 workers who had been exposed to utanium(VI) fluoride and its hydrolysis products following the accidental mpture of a 14-t shipping cylinder in early 1986 indicated that none of the 31 workers sustained any observable health effects from exposure to U even though an exposure limit of 9.6 mg was exceeded by eight of the workers (244). [Pg.336]

When 4,4 -dichlorodiphenyl sulfone is treated with two equivalents of sodium hydroxide in aqueous DMSO, only one Cl is hydrolyzed229. Presumably the arylsulfonyl activating effect is eliminated by conjugation of O with the ring in the first hydrolysis product. [Pg.531]

The rate of polymer erosion in the presence of incorporated anhydride and release of an incorporated drug depends on the pK of the diacid formed by hydrolysis of the anhydride and its concentration in the matrix (20). This dependence is shown in Fig. 7 for 2,3-pyridine dicarboxylic anhydride and for phthaUc anhydride. In this study, methylene blue was used as a marker. The methylene blue release rate depends both on the pK and on the concentration of diacid hydrolysis product in the matrix. However, at anhydride concentrations greater than 2 wt%, the erosion rate reaches a limiting value and further increases in anhydride concentration have no effect on the rate of polymer hydrolysis. Presumably at that point Vj, the rate of water intrusion into the matrix, becomes rate limiting. [Pg.133]

A 20 g sample, prepared and stored in a dry box for several months, developed a thin crust of oxidation/hydrolysis products. When the crust was disturbed, a violent explosion occurred, later estimated as equivalent to 230 g TNT. A weaker explosion was observed with potassium tetrahydroaluminate. The effect was attributed to superoxidation of traces of metallic potassium, and subsequent interaction of the hexahydroaluminate and superoxide after frictional initiation. Precautions advised include use of freshly prepared material, minimal storage in a dry diluent under an inert atmosphere and destruction of solid residues. Potassium hydrides and caesium hexahydroaluminate may behave similarly, as caesium also superoxidises in air. [Pg.53]

The temperature resistance of the polysiloxane on the samples was tested by stepwise heating up to 500°C. Whereas the pure hydrolysis product undergoes a complete thermal degradation via oxidative conversion of the CH3-Si groups into HO-Si groups, the polysiloxane persists on the silica sample. This stabilization effect most likely results from the covalent attachment of the methyl-polysiloxane. [Pg.327]

The calcein-AM assay [82-84] and cytotoxicity assays (e.g., performed with doxorubicin) [77, 78] are both basically competition assays. The accumulation of a primary substrate (e.g., calcein-AM or doxorubicin) in the cytosol of living cells is measured after addition of a second substrate (also called modifier or reverser) that reduces the efflux of the primary substrate. In the case of the calcein-AM assay, the primary substrate, calcein-AM, is hydrolyzed as soon as it reaches the cytosol, and the highly fluorescent hydrolysis product (calcein) can be determined using fluorescence spectroscopy. The more effective the reversal agent, the stronger is the increase in calcein fluorescence. Data can be quantified in terms of inhibitory constants, IQ, of the reversal agent. [Pg.480]

Steam is an effective method of destroying arsenic vesicants. However, care must be taken to limit the spread of the agent and to guard against production of the toxic and potentially vesicating hydrolysis products (see Section 4.4.5). [Pg.196]

VO(acac)2 < VO(Et-acac)2 VO(Me-acac)2 BMOV. Conversion rates for all hydrolysis products were faster than for the original species. Both EPR and visible spectroscopic studies of solutions prepared for administration to diabetic rats ocumented both a salt effect on the species formed and formation of a new halogen-containing complex. The authors concluded that vanadium compound efficacy with respect to long-term lowering of plasma glucose levels in diabetic rats traced the concentration of the hydrolysis product in the administration solution. [Pg.277]

The serum CES was purified to homogeneity to determine its contribution to pyrethroid metabolism in the rat [30]. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CES, but deltamethrin, esfenvalerate, a-cypermethrin, and m-permethrin were slowly hydrolyzed. Two model lipases produced no hydrolysis products from pyrethroids. These results demonstrated that extrahepatic esterolytic metabolism of specific pyrethroids might be significant. [Pg.122]

A recent new discovery is the fact that the hydrolysis of branched /3-alkyl-substituted aluminoxanes are, in some cases, as effective as co-catalysts in olefin polymerization as MAO.63,64 For example, when combined with the the metallocenes, Cp 2ZrCl2, the hydrolysis products (Al/HzO = 2) of R3A1 (R = Bu and Oct) produced akylated ion pairs with high polymerization activities.65 The same combinations with Cp2ZrCl2 did not produce active catalysts, a result interpreted as due to the inhibition of /3-hydride elimination in the substituted metallocene derivatives. [Pg.271]

Such species adsorb specifically and modify the surface charge of the colloids. As shown in Fig. 7.7 these hydrolysis products have a different effect than Al3+ (at low... [Pg.276]

Now 4 mol. are required to effect complete hydrolysis to sodium orthophosphate according to equation (c), but only 2 mol. are required either for the removal of fluorine alone and conversion into sodium di-isopropyl phosphate (d) or for conversion into disodium fluorophosphonate (e). To decide between these reactions, half of the above hydrolysis product was rendered acid to bromophenol Hue... [Pg.61]

Halogen content If halogens in the anion are not crucial for specific reactions performed in the ionic liquid, they should be avoided. Moisture sensitivity, halogenide transfers, alcoholysis and toxic effects are often connected with halogen atoms in the molecule [27]. In addition, the hydrolysis products HCl or HF act corrosively. Within the project reported by Wasserscheid and coworkers they successfully developed ionic liquids with alkylsulfate groups as anions to overcome the halogen content. These new solvents show very favorable properties. [Pg.5]

Ramakrishna, C., Gowda, T.K.S., and Sethunathan, N. Effect of benomyl and its hydrolysis products. MBC and AB. on nitrification in a flooded soil. Bull Environ. Contam. Toxicol, 21(3) 328-333, 1979. [Pg.1713]

In the early nineteen-sixties Halpem, James and co-workers studied the hydrogenation of water-soluble substrates in aqueous solutions catalyzed by rathenium salts [6]. RuCh in 3 M HCl catalyzed the hydrogenation of Fe(III) to Fe(II) at 80 °C and 0.6 bar H2. Similarly, Ru(IV) was autocatalytically reduced to Ru(III) which, however, did not react further. An extensive study of the effect of HCl concentration on the rate of such hydrogenations revealed, that the hydrolysis product, [RuCln(OH)(H20)5. ] " was a catalyst of lower activity. It was also established, that the mechanism involved a heterolytic splitting of H2. In accordance with this suggestion, in the absence of reducible substrates, such as Fe(in) there was an extensive isotope exchange between the solvent H2O and D2 in the gas phase. [Pg.56]

The tropylium cation (274) first observed 1891 and rediscovered in 1957 is perfectly stable and isolable. Cyclopropenyl cations have been observed in solution a long time ago, but 273 remained elusive until very recently. Benzocyclo-propene (1) reacts with triphenylfluoroborate via hydride transfer some 5 times less rapidly than cycloheptatriene. The reaction of deuterated 1 exhibits a kinetic isotope effect of 7.0. However, only a low yield of benzaldehyde (277), the expected hydrolysis product of 273, could be isolated from the reaction mixture. ... [Pg.79]


See other pages where Hydrolysis products, effect is mentioned: [Pg.358]    [Pg.155]    [Pg.93]    [Pg.405]    [Pg.405]    [Pg.260]    [Pg.97]    [Pg.559]    [Pg.52]    [Pg.118]    [Pg.308]    [Pg.120]    [Pg.303]    [Pg.313]    [Pg.316]    [Pg.273]    [Pg.290]    [Pg.160]    [Pg.276]    [Pg.159]    [Pg.82]    [Pg.119]    [Pg.115]    [Pg.200]    [Pg.19]    [Pg.38]    [Pg.104]    [Pg.331]    [Pg.56]    [Pg.5]    [Pg.24]   


SEARCH



Hydrolysis effects

Hydrolysis products

Product effect

© 2024 chempedia.info