Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis phenol synthesis

The industrial phenol synthesis of Dow or Bayer via hydrolysis of chlorobenzene with sodium hydroxide at 360-390° is well reviewed in Ref. n. [Pg.109]

The cobalt(III)-promoted hydrolysis of amino acid esters and peptides and the application of cobalt(III) complexes to the synthesis of small peptides has been reviewed. The ability of a metal ion to cooperate with various inter- and intramolecular acids and bases and promote amide hydrolysis has been investigated. The cobalt complexes (5-10) were prepared as potential substrates for amide hydrolysis. Phenolic and carboxylic functional groups were placed within the vicinity of cobalt(III) chelated amides, to provide models for zinc-containing peptidases such as carboxypeplidase A. The incorporation of a phenol group as in (5) and (6) enhanced the rate of base hydrolysis of the amide function by a factor of 10 -fold above that due to the metal alone. Intramolecular catalysis by the carboxyl group in the complexes (5) and (8) was not observed. The results are interpreted in terms of a bifunctional mechanism for tetrahedral intermediate breakdown by phenol. [Pg.309]

GattermaDD synthesis A method for the synthesis of aromatic hydroxyaldehydes. E.g. AICI3 is used to bring about the condensation of phenol with a mixture of gaseous hydrochloric acid and hydrocyanic acid an aldimine hydrochloride is formed and on hydrolysis gives p-hydroxybenzaldehyde... [Pg.187]

Hoesch synthesis A variation of the Gattermann synthesis of hydroxy-aldehydes, this reaction has been widely applied to the synthesis of anthocyanidins. It consists of the condensation of polyhydric phenols with nitriles by the action of hydrochloric acid (with or without ZnCl2 as a catalyst). This gives an iminehydrochloride which on hydrolysis with water gives the hydroxy-ketone. [Pg.205]

The most important synthesis of phenols m the laboratory is from amines by hydrolysis of their corresponding diazonmm salts as described m Section 22 17... [Pg.1001]

A simple synthesis of tetrahydroxyben2oquinone by methoxylation—hydrolysis of chloranil has been reported (265). Similarly, tetraar5ioxyben2oquinones have been prepared from chloranil and alkali salts of phenols (266). [Pg.390]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]

The ketimine is an acetone-blocked diamine. The synthesis and applications of ketimines will be discussed later. The curing concept for the adhesive is shown in Fig. 7. Phenol-blocked prepolymers would normally unblock at approximately 150°C. However, an aliphatic diamine, generated by the hydrolysis of the ketimine to an aliphatic diamine and ketone as a result of exposure to the moisture in the air, is sufficient to cure the windshield adhesive at room temperature. [Pg.793]

Iodosobenzene diacetate is used as a reagent for the preparation of glycol diacetates from olefins,9 for the oxidation of aromatic amines to corresponding azo compounds,10 for the ring acetylation of N-arylacetamides,11 for oxidation of some phenols to phenyl ethers,12 and as a coupling agent in the preparation of iodonium salts.13 Its hydrolysis to iodosobenzene constitutes the best synthesis of that compound.14... [Pg.64]

Recent examples of this synthesis are of two types. The first involves condensation of the activated phenol, 2-amino-4,6-dinitrophenol (346a) with 2-dimethyl-amino-3,3-dimethyl-3//-azirine (346b) (in MeCN, 0°C- 20°C, A, 24 h) to afford a separable mixture of four products, one of which was 2-dimethylamino-3,3-dimethyl-5,7-dinitro-3,4-dihydroquinoxaline (346c) ( 20% yield) and another its hydrolysis product, 3,3-dimethyl-5,7-dinitro-3,4-dihydro-2(l//)-quinoxalinone (346d) ( 8%) the mechanism of such condensations has been discussed. ... [Pg.47]

The asymmetric reduction of the benzoxathiin is very appealing because of its simplicity (Scheme 5.3). It was envisioned that intermediate 16 could be prepared from thiol-phenol 7 and bro moke tone 17. Scheme 5.8 summarized the synthesis for 16. The l,3-benzoxathiol-2-one 35 was prepared from 1,4-benzoquinone and thiourea following a literature procedure with minor modifications. Benzylation of 35 with benzyl bromide in the presence of KI gave benzyl ether 36 as a crystalline solid. It was observed that the benzylation gave better results when the reaction was run under anaerobic conditions. Hydrolysis of thiocarbonate 36 gave free thiophenol 7 which was used directly in the next reaction. [Pg.150]

Phenol has been obtained by distillation from petroleum and synthesis by oxidation of cumene or toluene, and by vapor-phase hydrolysis of chlorobenzene (USITC 1987). In 1995, 95% of U.S. phenol production was based on oxidation of cumene except at one company that used toluene oxidation and a few companies that distilled phenol from petroleum (CMR 1996). In 1995 the total annual capacity of phenol production approached 4.5 billion pounds (CMR 1996). [Pg.159]

A number of lower volume chemicals can be obtained from wood hydrolysis. Furfural is formed from the hydrolysis of some polysaccharides to pentoses, followed by dehydration. This process is still used in the Soviet Union. Furfural is used in small amounts in some phenol plastics it is a small minor pesticide and an important commercial solvent. It can be converted into the common solvent tetrahydrofuran (THF) and an important solvent and intermediate in organic synthesis, furfuryl alcohol. [Pg.411]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]


See other pages where Hydrolysis phenol synthesis is mentioned: [Pg.169]    [Pg.244]    [Pg.293]    [Pg.152]    [Pg.376]    [Pg.37]    [Pg.39]    [Pg.2]    [Pg.248]    [Pg.292]    [Pg.103]    [Pg.60]    [Pg.61]    [Pg.126]    [Pg.130]    [Pg.1417]    [Pg.205]    [Pg.386]    [Pg.570]    [Pg.355]    [Pg.480]    [Pg.62]    [Pg.282]    [Pg.27]    [Pg.105]    [Pg.625]    [Pg.1408]    [Pg.1409]    [Pg.1474]    [Pg.1478]    [Pg.338]    [Pg.769]    [Pg.165]    [Pg.71]    [Pg.199]   
See also in sourсe #XX -- [ Pg.75 , Pg.123 , Pg.124 ]




SEARCH



Hydrolysis synthesis

Phenol synthesis

Phenolics synthesis

© 2024 chempedia.info