Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microbial hydrolysis

Once in the soil solution, urea—formaldehyde reaction products are converted to plant available nitrogen through either microbial decomposition or hydrolysis. Microbial decomposition is the primary mechanism. The carbon in the methylene urea polymers is the site of microbial activity. Environmental factors that affect soil microbial activity also affect the nitrogen availabiUty of UF products. These factors include soil temperature, moisture, pH, and aeration or oxygen availabiUty. [Pg.131]

Plasteins ate formed from soy protein hydrolysates with a variety of microbial proteases (149). Preferred conditions for hydrolysis and synthesis ate obtained with an enzyme-to-substrate ratio of 1 100, and a temperature of 37°C for 24—72 h. A substrate concentration of 30 wt %, 80% hydrolyzed, gives an 80% net yield of plastein from the synthesis reaction. However, these results ate based on a 1% protein solution used in the hydrolysis step this would be too low for an economical process (see Microbial transformations). [Pg.471]

Fig. 4. Microbial phases in anaerobic digestion A, hydrolysis B, acidification C, methane fermentation. Fig. 4. Microbial phases in anaerobic digestion A, hydrolysis B, acidification C, methane fermentation.
Fluridone is a weak base with low water solubiUty. Sorption of fluridone increases with decreasing pH (436). Leaching of fluridone was not significant in field study, and the persistence has been determined to be less than 365 days. The degradation of fluridone appears to be microbial in nature, and accelerated breakdown of the herbicide occurs upon repeated appHcations (437). Fluorochloridone is shown to degrade by hydrolysis at pH 7 and 9, but not at lower pH. The half-Hves for this reaction are 190 and 140 days for pH 7 and 9, respectively. Breakdown by photolysis occurs rapidly with a half-hfe of 4.3 days at pH 7 (438). An HA is available for acifluorfen. [Pg.54]

Emissions During Exterior End Use. When flexible PVC is used in exterior appHcations plasticizer loss may occur due to a number of processes which include evaporation, microbial attack, hydrolysis, degradation, exudation, and extraction. It is not possible, due to this wide variety of contribution processes, to assess theoretically the rate of plasticizer loss by exposure outdoors. It is necessary, therefore, to carry out actual measurements over extended periods in real life situations. Litde suitable data have been pubHshed with the exception of some studies on roofing sheet (47). The data from roofing sheet has been used to estimate the plasticizer losses from all outdoor appHcations. This estimate may weU be too high because of the extrapolation involved. Much of this extracted plasticizer does not end up in the environment because considerable degradation takes place during the extraction process. [Pg.132]

Enzymatic Method. L-Amino acids can be produced by the enzymatic hydrolysis of chemically synthesized DL-amino acids or derivatives such as esters, hydantoins, carbamates, amides, and acylates (24). The enzyme which hydrolyzes the L-isomer specifically has been found in microbial sources. The resulting L-amino acid is isolated through routine chemical or physical processes. The D-isomer which remains unchanged is racemized chemically or enzymatically and the process is recycled. Conversely, enzymes which act specifically on D-isomers have been found. Thus various D-amino acids have been... [Pg.278]

Raw juice is heated, treated sequentially with lime (CaO) and carbon dioxide, and filtered. This accomplishes three objectives (/) microbial activity is terminated (2) the thin juice produced is clear and only lightly colored and (J) the juice is chemically stabilized so that subsequent processing steps of evaporation and crystalliza tion do not result in uncontrolled hydrolysis of sucrose, scaling of heating surfaces, or coprecipitation of material other than sucrose. [Pg.26]

Increasingly, biochemical transformations are used to modify renewable resources into useful materials (see Microbial transformations). Fermentation (qv) to ethanol is the oldest of such conversions. Another example is the ceU-free enzyme catalyzed isomerization of glucose to fmctose for use as sweeteners (qv). The enzymatic hydrolysis of cellulose is a biochemical competitor for the acid catalyzed reaction. [Pg.450]

CDU in pure form is a white powder. It is made slowly available to the soil solution by nature of its limited solubihty in water. Once in the soil solution, nitrogen from CDU is made available to the plant through a combination of hydrolysis and microbial decomposition. As with any CRE which is dependent on microbial action, the mineralization of CDU is temperature dependent. Product particle size has a significant effect on CDU nitrogen release rate. Smaller particles mineralize more rapidly because of the larger surface contact with the soil solution and the microbial environment. The rate of nitrogen release is also affected by pH because CDU degrades more rapidly in acidic soils. [Pg.133]

Microbial serine proteases, such as chymotrypsin, catalyse the hydrolysis of N-acetyl-L-amino add esters (Figure A8.ll). [Pg.285]

Methyl-l,10-undecadiene, ADMET polymerization of, 442 Michaelis-Menten enzymatic kinetics, 84 Microbial hydrolysis, 43 Microcellular elastomers, 204-205 Microphase-separated block copolymers, 6-7... [Pg.589]


See other pages where Microbial hydrolysis is mentioned: [Pg.298]    [Pg.463]    [Pg.118]    [Pg.588]    [Pg.511]    [Pg.57]    [Pg.16]    [Pg.56]    [Pg.120]    [Pg.242]    [Pg.15]    [Pg.584]    [Pg.243]    [Pg.298]    [Pg.463]    [Pg.118]    [Pg.588]    [Pg.511]    [Pg.57]    [Pg.16]    [Pg.56]    [Pg.120]    [Pg.242]    [Pg.15]    [Pg.584]    [Pg.243]    [Pg.468]    [Pg.206]    [Pg.52]    [Pg.53]    [Pg.53]    [Pg.310]    [Pg.242]    [Pg.473]    [Pg.192]    [Pg.342]    [Pg.433]    [Pg.393]    [Pg.237]    [Pg.133]    [Pg.2150]    [Pg.347]    [Pg.93]    [Pg.102]    [Pg.104]    [Pg.74]    [Pg.330]    [Pg.43]   


SEARCH



© 2024 chempedia.info