Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation, catalytic bond isomerization with alkenes

The monosulfonated PPh derivative, Ph2P(m-C6H4S03K) (DPM) and its rhodium complex, HRh(CO)(DPM)3 have been synthesized and characterized by IR and NMR spectroscopic techniques. The data showed that the structure was similar to [HRh(CO)(PPh3)3]. The catalytic activity and selectivity of [HRh(CO)(DPM)3] in styrene hydroformylation were studied in biphasic catalytic systems.420 421 Rh1 complexes [Rh(acac)(CO)(PR3)] with tpa (131), cyep (132), (126), ompp (133), pmpp (134), tmpp (135), PPh2(pyl), PPh(pyl)2, and P(pyl)3 were characterized with NMR and IR spectra. Complexes with (131), (132), and (126) were catalysts for hydrogenation of C—C and C—O bonds, isomerization of alkenes, and hydroformylation of alkenes.422 Asymmetric hydroformylation of styrene was performed using as catalyst precursor [Rh(//-0 Me)(COD)]2 associated with sodium salts of m-sulfonated diarylphosphines.423... [Pg.177]

Comparison of the results for catalytic isomerization of pent-l-ene to trans-pent-2-ene with the basic and one-electron donating properties of the catalysts led to the conclusion that two different reaction mechanisms operate in double bond isomerization reactions (a) an ionic mechanism which involves proton abstraction from the alkene molecule by the super base site (pAia = 37 for pentenes) and (b) a free radical mechanism which involves the abstraction of a hydrogen atom from the alkene by the one-electron donor center (Scheme 39). [Pg.282]

The early use of deuterium in place of hydrogen in the study of catalytic hydrogenation led to the recognition that the process was not simply the addition of H2 to the double bond. Horiuti and Polanyi proposed that both H2 and alkene (1) are bound to the catalyst surface and transformed to products by a sequence of elementary steps, which they represented as shown in Scheme 1, where an asterisk ( ) represents a vacant site on the catalyst.The last step, (d), is virtually irreversible under the usual hydrogenation conditions, but can be observed in the exchange reactions of D2 with alkanes. The mechanism accounts for the isomerization of an alkene if the reversal of step (c), which involves the formation of the alkyl intermediate (3), involves the abstraction of a hydrogen atom other than the one first added, and is coupled with the desorption of the alkene, (2) - (1). At present, the bond between the alkene and the metal often is represented as a ir-complex (4), as in equation (7). ... [Pg.420]

While various borohydride nickel ratios have been used in these nickel boride preparations maximum P-2 catalytic activity was observed with a 2 1 BH4 Ni ratio.However, when the reduction was run under a hydrogen atmosphere using a 4 1 BH4 Ni ratio, a hydrogenated nickel boride catalyst, the P-3 nickel boride, was obtained.27 This catalyst was somewhat more active than the P-2 catalyst for alkene hydrogenation but it induced signifieantly more double bond isomerization during the reaction. [Pg.234]

One common class of catalytic reactions involves 1,2-addition of a CH bond across a multiple bond (eq. 23). Such is the case for alkene hydrogenation (XY = H2), hydrosilation (XY = RsSi—H), hydroboration (XY = R2B—H), and disilylation (XY = RsSi—SiRs). An alkene isomerization like equation 10 can be considered as intramolecular C—H addition across the 2,3—C=C bond. The Heck reaction (eq. 24) is an example of an addition of a C—Hal bond combined with an elimination of a H—Hal group. Similarly, the Wacker process is effectively an addition of H—OH across the ethylene C—C bond, followed by an elimination of H2. [Pg.1759]

In contrast with these results, catalytic cracking yields a much higher percentage of branched hydrocarbons. For example, the catalytic cracking of cetane yields 50-60 mol of isobutane and isobutylene per 100 mol of paraffin cracked. Alkenes crack more easily in catalytic cracking than do saturated hydrocarbons. Saturated hydrocarbons tend to crack near the center of the chain. Rapid carbon-carbon double-bond migration, hydrogen transfer to trisubstituted olefinic bonds, and extensive isomerization are characteristic.52 These features are in accord with a carbo-cationic mechanism initiated by hydride abstraction.43,55-62 Hydride is abstracted by the acidic centers of the silica-alumina catalysts or by already formed carbocations ... [Pg.34]

The reduction of a carbon-carbon multiple bond by the use of a dissolving metal was first accomplished by Campbell and Eby in 1941. The reduction of disubstituted alkynes to c/ s-alkenes by catalytic hydrogenation, for example by the use of Raney nickel, provided an excellent method for the preparation of isomerically pure c -alkenes. At the time, however, there were no practical synthetic methods for the preparation of pure trani-alkenes. All of the previously existing procedures for the formation of an alkene resulted in the formation of mixtures of the cis- and trans-alkenes, which were extremely difficult to separate with the techniques existing at that time (basically fractional distillation) into the pure components. Campbell and Eby discovered that dialkylacetylenes could be reduced to pure frani-alkenes with sodium in liquid ammonia in good yields and in remarkable states of isomeric purity. Since that time several metal/solvent systems have been found useful for the reduction of C=C and C C bonds in alkenes and alkynes, including lithium/alkylamine, ° calcium/alkylamine, so-dium/HMPA in the absence or presence of a proton donor,activated zinc in the presence of a proton donor (an alcohol), and ytterbium in liquid ammonia. Although most of these reductions involve the reduction of an alkyne to an alkene, several very synthetically useful reactions involve the reduction of a,3-unsaturated ketones to saturated ketones. ... [Pg.478]

In the case of reactions such as valence isomerization, metathesis reactions of alkenes and alkynes, oligomerization or cyclooligomerization of olefins, metallacycloalkanes are of special importance. Their catalytic efficiency depends on the ease of the M—C bond cleavage, which is the result of reductive elimination of the organic substrate or of /J-hydrogen transfer. Also a- or / -C—C bond rupture has been reported. Heterocycles with an aliphatic carbon skeleton and a donor atom adjacent to the metal are suitable model compounds for the study of individual catalytic steps and structural properties. In connection with the activation of C—H bonds, cyclometa-lation has become a very general reaction and was reviewed in 1977. ... [Pg.238]

Alkenes are converted to epoxides by oxidation with peroxy acids, and thereby they are protected with regard to certain chemical transformations. Alkaline hydrogen peroxide selectively attacks enone double bonds in the presence of other alkenes. The epoxides can be transformed back to alkenes by reduction-dehydration sequences or using triphenylphosphine, chromous salts, zinc, or sodium iodide and acetic acid. A more advantageous and fairly general method consists, however, of the treatment of epoxides with dimethyl diazomalonate in the presence of catalytic amounts of binuclear rhodium(II) car-boxylate salts. This deoxygenation proceeds under neutral conditions and without isomerization or cy-clopropanation of the liberated alkene (Scheme 97). Furthermore, epoxides can be converted to alkenes with the aid of various metal carbonyl complexes. Thus, they may be nucleophilically opened with... [Pg.685]


See other pages where Hydrogenation, catalytic bond isomerization with alkenes is mentioned: [Pg.1006]    [Pg.76]    [Pg.281]    [Pg.43]    [Pg.1351]    [Pg.953]    [Pg.881]    [Pg.328]    [Pg.369]    [Pg.52]    [Pg.69]    [Pg.376]    [Pg.726]    [Pg.117]    [Pg.281]    [Pg.252]    [Pg.142]    [Pg.265]    [Pg.1697]    [Pg.98]    [Pg.1625]    [Pg.1058]    [Pg.377]    [Pg.618]    [Pg.146]    [Pg.1624]    [Pg.272]    [Pg.93]    [Pg.277]    [Pg.228]    [Pg.341]    [Pg.857]    [Pg.171]    [Pg.674]    [Pg.252]    [Pg.1709]    [Pg.3026]    [Pg.288]    [Pg.371]    [Pg.33]    [Pg.340]   
See also in sourсe #XX -- [ Pg.377 ]




SEARCH



Alkene bond

Alkenes bonding

Alkenes catalytic

Alkenes catalytic hydrogenation

Alkenes hydrogenation

Bonds with hydrogen

Hydrogen bonding isomerization

Hydrogen bonds isomerism

Hydrogenation isomerization

Isomerization catalytic

Isomerization, alkenes hydrogenation

© 2024 chempedia.info