Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide electrochemical oxidation

Petoxycatboxyhc acids have been obtained from the hydrolysis of stable o2onides with catboxyhc acids, pethydtolysis of acyhinida2ohdes, reaction of ketenes with hydrogen peroxide, electrochemical oxidation of alcohols and catboxyhc acids, and oxidation of catboxyhc acids with oxygen in the presence of o2one (181). [Pg.119]

Aksu S, Wang L, Doyle EM. Effect of hydrogen-peroxide on oxidation of copper in CMP slurries containing glycine. J Electrochem Soc 2003 50(11) ... [Pg.242]

The generation of reactive catalase in its oxidized stage can also be achieved by direct electrochemical oxidation (transfer of electrons from ferric protoporphyrin IX to the electrode). Thus, catalase immobilized on graphite electrodes has been used for the hydrogen peroxide-free oxidation of phenol [168l... [Pg.1145]

The perfluoroalkane sulfonic acids were fkst reported ki 1954. Trifluoromethanesulfonic acid was obtained by the oxidation of bis(ttifluoromethyl thio) mercury with aqueous hydrogen peroxide (1). The preparation of a series of perfluoroalkanesulfonic acids derived from electrochemical fluotination (ECF) of alkane sulfonyl haUdes was also disclosed ki the same year (2). The synthetic operations employed when the perfluoroalkanesulfonic acid is derived from electrochemical fluotination, which is the best method of preparation, are shown ki equations 1—3. [Pg.314]

Maltol. Otsuka Chemical Co. in Japan has operated several electroorganic processes on a small commercial scale. It has used plate and frame and aimular cells at currents in the range of 4500—6000 A (133). The process for the synthesis of maltol [118-71 -8], a food additive and flavor enhancer, starts from furfural [98-01-1] (see Food additives Flavors and spices). The electrochemical step is the oxidation of a-methylfurfural to give a cycHc acetal. The remaining reaction sequence is acid-catalyzed ring expansion, epoxidation with hydrogen peroxide, and then acid-catalyzed rearrangement to yield maltol, ie ... [Pg.102]

Oxidation of thiophene with Fenton-like reagents produces 2-hydroxythiophene of which the 2(570 One isomer is the most stable (Eq. 1) <96JCR(S)242>. In contrast, methyltrioxorhenium (Vn) catalyzed hydrogen peroxide oxidation of thiophene and its derivatives forms first the sulfoxide and ultimately the sulfone derivatives <96107211>. Anodic oxidation of aminated dibenzothiophene produces stable radical cation salts <96BSF597>. Reduction of dihalothiophene at carbon cathodes produces the first example of an electrochemical halogen dance reaction (Eq. 2) <96JOC8074>. [Pg.78]

S. Nagase, N. Ohkoshi, A. Ueda, K. Aoyagi, and A. Koyama, Hydrogen peroxide interferes with detection of nitric oxide by an electrochemical method. Clin. Chem. 43, 1246 (1997). [Pg.47]

Electrochemical biosensors based on detection of hydrogen peroxide at platinized electrodes were found to be more versatile allowing a decrease in detection limit down to 1 i,mol L 1 [109]. However, all biological liquids contain a variety of electrochemically easily oxidizable reductants, e.g. ascorbate, urate, bilirubin, catecholamines, etc., which are oxidized at similar potentials and dramatically affect biosensor selectivity producing parasitic anodic current [110]. [Pg.442]

The first CNT-modified electrode was reported by Britto et al. in 1996 to study the oxidation of dopamine [16]. The CNT-composite electrode was constructed with bro-moform as the binder. The cyclic voltammetry showed a high degree of reversibility in the redox reaction of dopamine (see Fig. 15.3). Valentini and Rubianes have reported another type of CNT paste electrode by mixing CNTs with mineral oil. This kind of electrode shows excellent electrocatalytic activity toward many materials such as dopamine, ascorbic acid, uric acid, 3,4-dihydroxyphenylacetic acid [39], hydrogen peroxide, and NADH [7], Wang and Musameh have fabricated the CNT/Teflon composite electrodes with attractive electrochemical performance, based on the dispersion of CNTs within a Teflon binder. It has been demonstrated that the electrocatalytic properties of CNTs are not impaired by their association with the Teflon binder [15]. [Pg.489]

XOD is one of the most complex flavoproteins and is composed of two identical and catalytically independent subunits each subunit contains one molybdenium center, two iron sulfur centers, and flavine adenine dinucleotide. The enzyme activity is due to a complicated interaction of FAD, molybdenium, iron, and labile sulfur moieties at or near the active site [260], It can be used to detect xanthine and hypoxanthine by immobilizing xanthine oxidase on a glassy carbon paste electrode [261], The elements are based on the chronoamperometric monitoring of the current that occurs due to the oxidation of the hydrogen peroxide which liberates during the enzymatic reaction. The biosensor showed linear dependence in the concentration range between 5.0 X 10 7 and 4.0 X 10-5M for xanthine and 2.0 X 10 5 and 8.0 X 10 5M for hypoxanthine, respectively. The detection limit values were estimated as 1.0 X 10 7 M for xanthine and 5.3 X 10-6M for hypoxanthine, respectively. Li used DNA to embed xanthine oxidase and obtained the electrochemical response of FAD and molybdenum center of xanthine oxidase [262], Moreover, the enzyme keeps its native catalytic activity to hypoxanthine in the DNA film. So the biosensor for hypoxanthine can be based on... [Pg.591]


See other pages where Hydrogen peroxide electrochemical oxidation is mentioned: [Pg.407]    [Pg.407]    [Pg.420]    [Pg.312]    [Pg.420]    [Pg.479]    [Pg.115]    [Pg.674]    [Pg.22]    [Pg.352]    [Pg.99]    [Pg.312]    [Pg.314]    [Pg.461]    [Pg.56]    [Pg.59]    [Pg.59]    [Pg.348]    [Pg.377]    [Pg.112]    [Pg.355]    [Pg.309]    [Pg.9]    [Pg.272]    [Pg.585]    [Pg.240]    [Pg.64]    [Pg.281]    [Pg.120]    [Pg.414]    [Pg.28]    [Pg.491]    [Pg.540]    [Pg.581]    [Pg.585]    [Pg.586]    [Pg.588]    [Pg.588]    [Pg.8]    [Pg.264]   


SEARCH



Electrochemical behaviour of hydrogen peroxide oxidation kinetics and mechanisms

Electrochemical oxidation

Hydrogen electrochemical

Hydrogenation electrochemical

Oxidants peroxides

Oxidation hydrogen peroxide

Oxidation peroxidation

Oxides peroxides

Oxidizers hydrogen peroxide

Peroxidative oxidation

Peroxidative oxidation hydrogen peroxide)

Peroxides oxidation

© 2024 chempedia.info