Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen molecule molecular orbitals

The hydrogen molecule molecular orbital and valence bond treatments... [Pg.85]

Dipole-dipole forces among HCl molecules Hydrogen bonds between water molecules Eondon forces between hydrogen molecules Molecular orbitals in the hydrogen molecule Molecular orbitals in a helium molecule ... [Pg.8]

As described previously for the hydrogen molecule, molecular orbital (MO) theory takes the atomic orbitals of the atoms, and mathematically combines the wave functions that represent these atomic orbitals (using an approach known as the linear combination of atomic orbitals). This combination produces new molecular orbitals that describe the regions of space occupied by the bonding electrons. The number of new molecular orbitals formed is the same as the number of atomic orbitals combined. The wave functions that represent the new molecular orbitals can be used to calculate the energy of an electron in those molecular orbitals. [Pg.513]

To get the molecular orbital of the hydrogen molecule, the orbital equations of the two atoms are combined. When the orbital equations are added together, the result is a bonding molecular orbital that extends over both atoms. Subtracting the orbital equations of the atoms produces an antibonding molecular orbital. This process is called the linear combination of atomic orbitals or LCAO. [Pg.93]

We will now describe the bonding in the hydrogen molecule using this model. The first step is to obtain the hydrogen molecule s orbitals, a process that is greatly simplified if we assume that the molecular orbitals can be constructed from the hydrogen I5 atomic orbitals. [Pg.416]

Figure 3.6 shows the LCAO method for generating molecular orbitals of diatomic molecules such as H2. In real molecules, the atomic orbitals of elemental carbon are not really transformed into the molecular orbitals found in methane (CH4). Figure 3.6 represents a mathematical model that mixes atomic orbitals to predict molecular orbitals. Molecular orbitals exist in real molecules and the LCAO model attempts to use known atomic orbitals for atoms to predict the orbitals in the molecule. Molecular orbitals and atomic orbitals are very different in shape and energy, so it is not surprising that the model used for diatomic hydrogen fails for molecules containing other than s-orbitals. [Pg.61]

The carbon atom has a share in eight electrons (Ne structure) whilst each hydrogen atom has a share in two electrons (He structure). This is a gross simplification of covalent bonding, since the actual electrons are present in molecular orbitals which occupy the whole space around the five atoms of the molecule. [Pg.415]

Flehre W J, Ditchfieid R and Popie J A 1972 Self-consistent molecular-orbital methods XII. Further extension of Gaussian-type basis sets for use in molecular orbital studies of organic molecules J. Chem. Phys. 56 2257-61 Flariharan P C and Popie J A 1973 The influence of polarization functions on molecular orbital hydrogenation energies Theoret. Chim. Acta. 28 213-22... [Pg.2195]

HMO theory is named after its developer, Erich Huckel (1896-1980), who published his theory in 1930 [9] partly in order to explain the unusual stability of benzene and other aromatic compounds. Given that digital computers had not yet been invented and that all Hiickel s calculations had to be done by hand, HMO theory necessarily includes many approximations. The first is that only the jr-molecular orbitals of the molecule are considered. This implies that the entire molecular structure is planar (because then a plane of symmetry separates the r-orbitals, which are antisymmetric with respect to this plane, from all others). It also means that only one atomic orbital must be considered for each atom in the r-system (the p-orbital that is antisymmetric with respect to the plane of the molecule) and none at all for atoms (such as hydrogen) that are not involved in the r-system. Huckel then used the technique known as linear combination of atomic orbitals (LCAO) to build these atomic orbitals up into molecular orbitals. This is illustrated in Figure 7-18 for ethylene. [Pg.376]

Tie hydrogen molecule is such a small problem that all of the integrals can be written out in uU. This is rarely the case in molecular orbital calculations. Nevertheless, the same irinciples are used to determine the energy of a polyelectronic molecular system. For an ([-electron system, the Hamiltonian takes the following general form ... [Pg.66]

In our hydrogen molecule calculation in Section 2.4.1 the molecular orbitals were provided as input, but in most electronic structure calculations we are usually trying to calculate the molecular orbitals. How do we go about this We must remember that for many-body problems there is no correct solution we therefore require some means to decide whether one proposed wavefunction is better than another. Fortunately, the variation theorem provides us with a mechanism for answering this question. The theorem states that the... [Pg.71]

We shall examine the simplest possible molecular orbital problem, calculation of the bond energy and bond length of the hydrogen molecule ion Hj. Although of no practical significance, is of theoretical importance because the complete quantum mechanical calculation of its bond energy can be canied out by both exact and approximate methods. This pemiits comparison of the exact quantum mechanical solution with the solution obtained by various approximate techniques so that a judgment can be made as to the efficacy of the approximate methods. Exact quantum mechanical calculations cannot be carried out on more complicated molecular systems, hence the importance of the one exact molecular solution we do have. We wish to have a three-way comparison i) exact theoretical, ii) experimental, and iii) approximate theoretical. [Pg.301]

Approximate Theoretical. The simplest molecular orbital problem is that of the hydrogen molecule ion (Pig KJ-3), is a preliminary example of all molecular orbital problems to come, w hich, although they may be very complicated, are elaborations on this simple example. [Pg.304]

Even though the problem of the hydrogen molecule H2 is mathematically more difficult than, it was the first molecular orbital calculation to appear in the literature (Heitler and London, 1927). In contrast to Hj, we no longer have an exact result to refer to, nor shall we have an exact energy for any problem to be encountered from this point on. We do, however, have many reliable results from experimental thermochemistry and spectroscopy. [Pg.308]

A very important difference between H2 and molecular orbital calculations is electron correlation. Election correlation is the term used to describe interactions between elections in the same molecule. In the hydrogen molecule ion, there is only one election, so there can be no election correlation. The designators given to the calculations in Table 10-1 indicate first an electron correlation method and second a basis set, for example, MP2/6-31 G(d,p) designates a Moeller-Plesset electron coiTclation extension beyond the Hartiee-Fock limit canied out with a 6-31G(d,p) basis set. [Pg.312]

Valence bond and molecular orbital theory both incorporate the wave description of an atom s electrons into this picture of H2 but m somewhat different ways Both assume that electron waves behave like more familiar waves such as sound and light waves One important property of waves is called interference m physics Constructive interference occurs when two waves combine so as to reinforce each other (m phase) destructive interference occurs when they oppose each other (out of phase) (Figure 2 2) Recall from Section 1 1 that electron waves m atoms are characterized by their wave function which is the same as an orbital For an electron m the most stable state of a hydrogen atom for example this state is defined by the Is wave function and is often called the Is orbital The valence bond model bases the connection between two atoms on the overlap between half filled orbifals of fhe fwo afoms The molecular orbital model assembles a sef of molecular orbifals by combining fhe afomic orbifals of all of fhe atoms m fhe molecule... [Pg.59]

We will use the valence bond approach extensively m our discussion of organic molecules and expand on it shortly First though let s introduce the molecular orbital method to see how it uses the Is orbitals of two hydrogen atoms to generate the orbitals of an H2 molecule... [Pg.60]

Asimple example is the formation of the hydrogen molecule from two hydrogen atoms. Here the original atomic energy levels are degenerate (they have equal energy), but as the two atoms approach each other, they interact to form two non degenerate molecular orbitals, the lowest of which is doubly occupied. [Pg.49]

The most important molecular- orbitals are the so-called frontier molecular- orbitals. These are the highest (energy) occupied molecular- orbital (HOMO), and lowest (energy) unoccupied molecular- orbital (LUMO). The following picture shows the LUMO surface for the hydrogen molecule, H2. The LUMO consists of two separate surfaces, a red... [Pg.1271]

Orbital Surfaces. Molecular orbitals provide important clues about chemical reactivity, but before we can use this information we first need to understand what molecular orbitals look like. The following figure shows two representations, a drawing and a computer-generated picture, of a relatively high-energy, unoccupied molecular orbital of hydrogen molecule, H2. [Pg.15]


See other pages where Hydrogen molecule molecular orbitals is mentioned: [Pg.184]    [Pg.13]    [Pg.184]    [Pg.13]    [Pg.360]    [Pg.375]    [Pg.402]    [Pg.165]    [Pg.33]    [Pg.137]    [Pg.1957]    [Pg.49]    [Pg.62]    [Pg.71]    [Pg.131]    [Pg.175]    [Pg.58]    [Pg.231]    [Pg.124]    [Pg.58]    [Pg.76]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Hydrogen molecul

Hydrogen molecule

Hydrogen molecule molecular orbital

Hydrogen molecule molecular orbital

Hydrogen molecule, bond length molecular orbitals

Hydrogen molecule, orbitals

Hydrogen orbitals

Hydrogen, molecular

Hydrogenation molecular hydrogen

Hydrogenic orbital

Molecular Orbitals for the Hydrogen Molecule-ion

Molecular orbital molecules

Molecular orbital theory hydrogen molecule

Molecular orbitals hydrogen

Molecular orbitals hydrogen molecule, antibonding

Molecular orbitals molecules

Molecular orbitals the hydrogen molecule ion

Molecules orbitals

Orbital hydrogen

The Hydrogen Molecule Molecular Orbitals

© 2024 chempedia.info