Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen ion, reaction

NMR, rapid mixing, and perturbation techniques have been most useful in the study of hydrogen ion reactions and transport. Since stopped flow is limited to the study of relatively slow reactions, most of the information about rapid proton-transfer reactions such as those between oxygen or nitrogen atoms is due either to NMR or to perturbation techniques. ... [Pg.644]

Decomposition of the excited cellulose molecules yields radical sites for grafting and additional H atoms (Equation 8). In like manner leather (LeNlL) can participate in hydrogen ion reactions (Equation 9), both the... [Pg.338]

When either hydrogen ions or hydroxide ions participate in a redox half-reaction, then clearly the redox potential is alTected by change of pH. Manganate(Vir) ions are usually used in well-acidified solution, where (as we shall see in detail later) they oxidise chlorine ions. If the pH is increased to make the solution only mildly acidic (pH = 3-6), the redox potential changes from 1.52 V to about 1.1 V, and chloride is not oxidised. This fact is of practical use in a mixture of iodide and chloride ions in mildly acid solution. manganate(VII) oxidises only iodide addition of acid causes oxidation of chloride to proceed. [Pg.102]

Standard Hydrogen Electrode The standard hydrogen electrode (SHE) is rarely used for routine analytical work, but is important because it is the reference electrode used to establish standard-state potentials for other half-reactions. The SHE consists of a Pt electrode immersed in a solution in which the hydrogen ion activity is 1.00 and in which H2 gas is bubbled at a pressure of 1 atm (Figure 11.7). A conventional salt bridge connects the SHE to the indicator half-cell. The shorthand notation for the standard hydrogen electrode is... [Pg.471]

The reduction potentials for the actinide elements ate shown in Figure 5 (12—14,17,20). These ate formal potentials, defined as the measured potentials corrected to unit concentration of the substances entering into the reactions they ate based on the hydrogen-ion-hydrogen couple taken as zero volts no corrections ate made for activity coefficients. The measured potentials were estabhshed by cell, equihbrium, and heat of reaction determinations. The potentials for acid solution were generally measured in 1 Af perchloric acid and for alkaline solution in 1 Af sodium hydroxide. Estimated values ate given in parentheses. [Pg.218]

Divalent copper, cobalt, nickel, and vanadyl ions promote chemiluminescence from the luminol—hydrogen peroxide reaction, which can be used to determine these metals to concentrations of 1—10 ppb (272,273). The light intensity is generally linear with metal concentration of 10 to 10 M range (272). Manganese(II) can also be determined when an amine is added to increase its reduction potential by stabili2ing Mn (ITT) (272). Since all of these ions are active, ion exchange must be used for deterrnination of a particular metal in mixtures (274). [Pg.274]

The presence of an electron donor causes the equiHbrium to shift to the left. The acidity represented by this mechanism is important in hydrocarbon conversion reactions. Acidity may also be introduced in certain high siHca zeoHtes, eg, mordenite, by hydrogen-ion exchange, or by hydrolysis of a zeoHte containing multivalent cations during dehydration, eg,... [Pg.449]

Rate studies show that base-cataly2ed reactions are second order and depend on the phenolate and methylene glycol concentrations. The most likely path involves a nucleophilic displacement by the phenoxide on the methylene glycol (1), with the hydroxyl as the leaving group. In alkaline media, the methylolated quinone intermediate is readily converted to the phenoxide by hydrogen-ion abstraction (21). [Pg.295]

Hydroquinone [123-31 -9] represents a class of commercially important black-and-white chemical reducing agents (see Hydroquinone,RESORCINOL, AND catechol). The following scheme for silver haUde development with hydroquinone shows the quantitative importance of hydrogen ion and haUde ion concentrations on the two half-ceU reactions that describe the silver—hydroquinone redox system ... [Pg.454]

When equal amounts of solutions of poly(ethylene oxide) and poly(acryhc acid) ate mixed, a precipitate, which appears to be an association product of the two polymers, forms immediately. This association reaction is influenced by hydrogen-ion concentration. Below ca pH 4, the complex precipitates from solution. Above ca pH 12, precipitation also occurs, but probably only poly(ethylene oxide) precipitates. If solution viscosity is used as an indication of the degree of association, it appears that association becomes mote pronounced as the pH is reduced toward a lower limit of about four. The highest yield of insoluble complex usually occurs at an equimolar ratio of ether and carboxyl groups. Studies of the poly(ethylene oxide)—poly(methacryhc acid) complexes indicate a stoichiometric ratio of three monomeric units of ethylene oxide for each methacrylic acid unit. [Pg.342]

Electrophile Addition Reactions. The addition of electrophilic (acidic) reagents HZ to propylene involves two steps. The first is the slow transfer of the hydrogen ion (proton) from one base to another, ie, from Z to the propylene double bond, to form a carbocation. The second is a rapid combination of the carbocation with the base, Z . The electrophile is not necessarily limited to a Lowry-Briiinsted acid, which has a proton to transfer, but can be any electron-deficient molecule (Lewis acid). [Pg.124]

First Carbonation. The process stream OH is raised to 3.0 with carbon dioxide. Juice is recycled either internally or in a separate vessel to provide seed for calcium carbonate growth. Retention time is 15—20 min at 80—85°C. OH of the juice purification process streams is more descriptive than pH for two reasons first, all of the important solution chemistry depends on reactions of the hydroxyl ion rather than of the hydrogen ion and second, the nature of the C0 2 U20-Ca " equiUbria results in a OH which is independent of the temperature of the solution. AH of the temperature effects on the dissociation constant of water are reflected by the pH. [Pg.26]

DispEcement. In many of the appHcations of chelating agents, the overall effect appears to be a displacement reaction, although the mechanism probably comprises dissociations and recombinations. The basis for many analytical titrations is the displacement of hydrogen ions by a metal, and the displacement of metal by hydrogen ions or other metal ions is a step in metal recovery processes. Some analytical pM indicators function by changing color as one chelant is displaced from its metal by another. [Pg.393]

Clay-catalyzed dimerization of unsaturated fatty acids appears to be a carbonium ion reaction, based on the observed double bond isomerization, acid catalysis, chain branching, and hydrogen transfer (8,9,11). [Pg.114]

The other reactions at the electrodes produce acid (anode) and base (cathode) so that there is a possibiUty of a pH gradient throughout the electrophoresis medium unless the system is well buffered (see Hydrogen-ion activity). Buffering must take the current load into account because the electrolysis reactions proceed at the rate of the current. Electrophoresis systems sometimes mix and recirculate the buffers from the individual electrode reservoirs to equalize the pH. [Pg.179]


See other pages where Hydrogen ion, reaction is mentioned: [Pg.179]    [Pg.18]    [Pg.128]    [Pg.4852]    [Pg.418]    [Pg.179]    [Pg.18]    [Pg.128]    [Pg.4852]    [Pg.418]    [Pg.211]    [Pg.2789]    [Pg.240]    [Pg.302]    [Pg.381]    [Pg.620]    [Pg.96]    [Pg.77]    [Pg.500]    [Pg.464]    [Pg.26]    [Pg.378]    [Pg.222]    [Pg.20]    [Pg.222]    [Pg.330]    [Pg.188]    [Pg.198]    [Pg.199]    [Pg.199]    [Pg.199]    [Pg.280]    [Pg.280]    [Pg.162]    [Pg.162]    [Pg.390]    [Pg.279]    [Pg.210]   
See also in sourсe #XX -- [ Pg.81 , Pg.82 ]

See also in sourсe #XX -- [ Pg.3 , Pg.8 , Pg.152 ]




SEARCH



Argon ions reaction with hydrogen

Hydrogen Exchange Reaction of Arenium Ions and their Precursors

Hydrogen carbonate ions reactions

Hydrogen ion acid-base reactions

Hydrogen ions reaction from species formation

Hydrogen ions reaction, ionic strength

Hydrogen peroxide reaction with bromide ions

Hydrogen peroxide reaction with iodide ions

Hydrogen peroxide reaction with transition metal ions

Hydrogen reaction + metal ions

Hydrogen-ion-reduction reaction

Phosphate ions, reaction with hydrogen

Simple Equilibrium Theory for Reactions Involving Aqueous Hydrogen Ions

The Reaction between Hydrogen Peroxide and Cupric Ions

The Reaction between Hydrogen Peroxide and Ferric Ions

© 2024 chempedia.info