Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen cyanide ketones

By (he direct addition of hydrogen cyanide to aldehydes and ketones, giving cyanhydrins ... [Pg.121]

To 2 ml. of the ester, add 2--3 drops of a saturated freshly prepared solution of scdium bisulphite. On shaking, a gelatinous precipitate of the bisulphite addition product (D) of the keto form separates, and on standing for 5-10 minutes usually crystallises out. This is a normal reaction of a ketone (see p. 344) hydrogen cyanide adds on similarly to give a cyanhydrin. [Pg.269]

With this as background let us now examine how the principles of nucleophilic addition apply to the characteristic reactions of aldehydes and ketones We 11 begin with the addition of hydrogen cyanide... [Pg.717]

The product of addition of hydrogen cyanide to an aldehyde or a ketone contains both a hydroxyl group and a cyano group bonded to the same carbon Compounds of this type are called cyanohydrins... [Pg.717]

Cyanohydrins (qv) are formed by the reaction of glucose and similar compounds with hydrogen cyanide. The corresponding aminonitrile from methyl isobutyl ketone can be formed with ammonia and hydrogen cyanide. [Pg.376]

Ammonium cyanide [12211-52-8] NH CN, a colorless crystalline soHd, is relatively unstable, and decomposes into ammonia and hydrogen cyanide at 36°C. Ammonium cyanide reacts with ketones (qv) to yield aminonitriles. Reaction of ammonium cyanide with glyoxal produces glycine. Because of its unstable nature, ammonium cyanide is not shipped or sold commercially. Unless it is kept cool and dry, decomposition releases vapors and forms black hydrogen cyanide polymer. [Pg.386]

A cyanohydrin is an organic compound that contains both a cyanide and a hydroxy group on an aUphatic section of the molecule. Cyanohydrias are usually a-hydroxy nitriles which are the products of base-cataly2ed addition of hydrogen cyanide to the carbonyl group of aldehydes and ketones. The lUPAC name for cyanohydrias is based on the a-hydroxy nitrile name. Common names of cyanohydrias are derived from the aldehyde or ketoae from which they are formed (Table 1). [Pg.410]

Addition of hydrogen cyanide to an aldose to form a cyanohydrin is the first step in the Kiliani-Fischer method for increasing the carbon chain of aldoses by one unit. Cyanohydrins react with Grignard reagents (see Grignard reaction) to give a-hydroxy ketones. [Pg.411]

Cyanohydrins can be formed by (/) the acid- or base-cataly2ed reaction of hydrogen cyanide with an aldehyde or ketone ... [Pg.412]

AH ahphatic aldehydes and most ketones react to form cyanohydrins. The lower reactivity of ketones, relative to aldehydes, is attributed to a combination of electron-donating effects and increased steric hindrance of the second alkyl group in the ketones. The magnitude of the equiUbrium constants for the addition of hydrogen cyanide to a carbonyl group is a measure of the stabiUty of the cyanohydrin relative to the carbonyl compound plus hydrogen cyanide ... [Pg.412]

Ethylene Cyanohydrin. This cyanohydrin, also known as hydracrylonitnle or glycocyanohydrin [109-78-4] is a straw-colored Hquid miscible with water, acetone, methyl ethyl ketone, and ethanol, and is insoluble in benzene, carbon disulfide, and carbon tetrachloride. Ethylene cyanohydrin differs from the other cyanohydrins discussed here in that it is a P-cyanohydrin. It is formed by the reaction of ethylene oxide with hydrogen cyanide. [Pg.415]

Cyclohexanone shows most of the typical reactions of aUphatic ketones. It reacts with hydroxjiamine, phenyUiydrazine, semicarbazide, Grignard reagents, hydrogen cyanide, sodium bisulfite, etc, to form the usual addition products, and it undergoes the various condensation reactions that are typical of ketones having cx-methylene groups. Reduction converts cyclohexanone to cyclohexanol or cyclohexane, and oxidation with nitric acid converts cyclohexanone almost quantitatively to adipic acid. [Pg.426]

Silylated cyanohydrins have also been prepared via silylation of cyanohydrins themselves and by the addition of hydrogen cyanide to silyl enol ethers. Silylated cyanohydrins have proved to be quite useful in a variety of synthetic transformations, including the regiospecific protection of p-quinones, as intermediates in an efficient synthesis of a-aminomethyl alcohols, and for the preparation of ketone cyanohydrins themselves.The silylated cyanohydrins of heteroaromatic aldehydes have found extensive use as... [Pg.199]

Diazoalkane and aldehyde Aldehydes or ketones and hydrogen cyanide... [Pg.254]

The use of acetone cyanohydrin (in an exchange reaction) instead of alcoholic hydrogen cyanide affords even higher yields of 17-cyanohydrins and the former reagent has the added advantage of reacting quantitatively and essentially selectively with the 17-ketone of androst-4-ene-3,17-dione. Sodium hydroxide promotes the exchange reaction in some cases. [Pg.133]

Hydroxy-20-cyanohydrins can be oxidized to 3-ketones in good yield with chromic acid, and the osmate ester of the unsaturated nitrile is also stable to this oxidant. " After hydrolysis of the osmate ester, the new 17-hydroxy-20-cyanohydrin which is presumably formed cannot be isolated, but loses hydrogen cyanide during the hydrolysis, and only the 17a-hydroxy-20-ketone is obtained. [Pg.218]

The enhanced reactivity of fluoroalkyl ketones is also manifested in the failure to stop the reaction with hydrogen cyanide at the stage of cyanohydrins Instead, oxazohdinones or dioxolanones are formed (equation 11) If, however, the reaction IS conducted under basic conditions with sodium bisulfite and sodium cyanide, the desired cyanohydrin can be prepared [ll ... [Pg.621]

The reaction of tnfluoromethyl-substituted A -acyl umnes toward nucleophiles in many aspects parallels that of the parent polyfluoro ketones Heteronucleophiles and carbon nucleophiles, such as enarmnes [37, 38], enol ethers [38, 39, 40], hydrogen cyanide [34], tnmethylsilylcarbomlnle [2,47], alkynes [42], electron-nch heterocycles [43], 1,3-dicarbonyl compounds [44], organolithium compounds [45, 46, 47, 48], and Gngnard compounds [49,50], readily undergo hydroxyalkylation with hexafluoroace-tone and amidoalkylation with acyl imines denved from hexafluoroacetone... [Pg.842]

Cyanohydrin formation (Section 17.7) Hydrogen cyanide adds to the carbonyl group of aldehydes and ketones. [Pg.867]

The formation of adducts of enamines with acidic carbon compounds has been achieved with acetylenes (518) and hydrogen cyanide (509,519,520) (used as the acetone cyanohydrin). In these reactions an initial imonium salt formation can be assumed. The addition of malonic ester to an enamine furnishes the condensation product, also obtained from the parent ketone (350,521). [Pg.420]

An a-amino acid 3 can be prepared by treating aldehyde 1 with ammonia and hydrogen cyanide and a subsequent hydrolysis of the intermediate a-amino nitrile 2. This so-called Strecker synthesis - is a special case of the Mannich reaction-, it has found application for the synthesis of a-amino acids on an industrial scale. The reaction also works with ketones to yield a, a -disubstituted a-amino acids. [Pg.270]

The scope of the reaction depends on the availability of the starting aldehyde (or ketone). A drawback is the toxicity of the hydrogen cyanide used as reactant. ... [Pg.271]

A bacterial isolate APN has been shown to convert a-aminopropionitril enantioselectively to L-alanine (94% yield, 75% e e). However, the major disadvantage of this approach, is the low stability of most aminonitriles in water (for example a-aminophenylacetonitrile in water of pH 7, degrades completely within 48 hours). The aminonitriles are always in equilibrium with the aldehyde or ketone and ammonia/HCN. Polymerisation of hydrogen cyanide gives an equilibrium shift resulting in the loss of the aminonitrile. Therefore, a low yield in amino adds is to be expected, which makes this method less attractive for the industrial synthesis of optically active amino adds. [Pg.280]

Today, the most promising synthesis of optically active cyanohydrins, especially with respect to the enantioselectivity of the reaction, is the enzyme-catalyzed addition of hydrogen cyanide to aldehydes and ketones, respectively. [Pg.667]

The synthesis of a-amino acids by reaction of aldehydes or ketones with ammonia and hydrogen cyanide followed by hydrolysis of the resulting a-aminonitrile is called the Strecker synthesis. Enzymatic hydrolysis has been applied to the kinetic resolution of intermediate a-aminonitriles [90,91]. The hydrolysis of (rac)-phenylglycine nitrile... [Pg.145]


See other pages where Hydrogen cyanide ketones is mentioned: [Pg.121]    [Pg.133]    [Pg.341]    [Pg.717]    [Pg.719]    [Pg.719]    [Pg.743]    [Pg.222]    [Pg.242]    [Pg.95]    [Pg.376]    [Pg.412]    [Pg.73]    [Pg.123]    [Pg.473]    [Pg.1023]    [Pg.717]    [Pg.719]    [Pg.719]    [Pg.743]    [Pg.236]    [Pg.126]    [Pg.785]   
See also in sourсe #XX -- [ Pg.909 ]




SEARCH



Cyanides hydrogen cyanide

Hydrogen cyanid

Hydrogen cyanide

Hydrogenation ketones

Ketones cyanidation

Ketones hydrogen

Reaction L.—(a) Addition of Hydrogen Cyanide to Aldehydes or Ketones

© 2024 chempedia.info