Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrodynamics axially dispersed plug flow

Dynamic analysis of a trickle bed reactor is carried out with a soluble tracer. The impulse response of the tracer is given at the inlet of the column to the gas phase and the tracer concentration distributions are obtained at the effluent both from the gas phase and the liquid phase simultaneously. The overall rate process consists the rates of mass transfer between the phases, the rate of diffusion through the catalyst pores and the rate of adsorption on the solid surface. The theoretical expressions of the zero reduced and first absolute moments which are obtained for plug flow model are compared with the expressions obtained for two different liquid phase hydrodynamic models such as cross flow model and axially dispersed plug flow model. The effect of liquid phase hydrodynamic model parameters on the estimation of intraparticle and interphase transport rates by moment analysis technique are discussed. [Pg.834]

Dynamic analysis of TBR by sitimules response technique has been succesfully applied to determine the extent of liquid axial mixing. There are number of learning and predictive models proposed in literature 2. Among them the ones having less number of parameters such as cross-flow model and axially dispersed plug flow ADPF model are the most adequate ones. A more realistic model profound for a TBR can be the one which includes the simultaneous effect of interphase and intraparticle transport rates, and the adequate hydrodynamic model, to minimize the relative importance of liquid mixing on these rates. [Pg.835]

The UASB tractor was modeled by the dispensed plug flow model, considering decomposition reactions for VFA componaits, axial dispersion of liquid and hydrodynamics. The difierential mass balance equations based on the dispersed plug flow model are described for multiple VFA substrate components considaed... [Pg.662]

Concerning the hydrodynamics and the dimensioning of the test reactor, some rules of thumb are a valuable aid for the experimentalist. It is important that the reactor is operated under plug-flow conditions in order to avoid axial dispersion and diffusion limitation phenomena. Again, it has to be made clear that in many cases testing of monolithic bodies such as metal gauzes, foam ceramics, or monoliths used for environmental catalysis, often needs to be performed in the laminar flow regime. [Pg.395]

Determinations of Peclet number were carried out by comparison between experimental residence time distribution curves and the plug flow model with axial dispersion. Hold-up and axial dispersion coefficient, for the gas and liquid phases are then obtained as a function of pressure. In the range from 0.1-1.3 MPa, the obtained results show that the hydrodynamic behaviour of the liquid phase is independant of pressure. The influence of pressure on the axial dispersion coefficient in the gas phase is demonstrated for a constant gas flow velocity maintained at 0.037 m s. [Pg.679]

This study, which contributes towards the understanding of hydrodynamic behaviour of gas-liquid reactors at elevated pressure, has shown the influence of pressure on the gas flow in a packed column through the axial dispersion coefficient. The gas flow diverges from plug flow when the pressure increases. As for the gas hold-up, an important parameter for the calculation of the reactional volume of a reactor, the pressure has no effect on this parameter in the studied range. This result allows to extrapolate gas hold-up values obtained... [Pg.684]

Advantages of three-phase fluidized beds over trickle beds and other fixed bed systems are temperature uniformity, high heat transfer, ability to add and remove catalyst particles continuously, and limited mass transfer resistances (both external to the particles and bubbles, because of turbulence and limited bubble size, and inside the particles owing to relatively small particle diameters). Disadvantages include substantial axial dispersion (of gas, liquid, and particles), causing substantial deviations from plug flow, and lack of predictability because of the complex hydrodynamics. There are two major applications of gas-liquid-solid-fluidized beds biochemical processes and hydrocarbon processing. [Pg.1017]

Exelus has developed a novel structured catalytic system that allows one to meet all four criteria in a single catalytic system Hydrodynamic tests reveal that the HyperCat has similar gas hold-up as a slurry bubble column reactor but with a much lower liquid axial-dispersion coefficient. Cold-flow studies appear to indicate that the heat-transfer coefficient of this new system is similar to a bubble column reactor. Catalyst performance tests reveal that the performance of the HyperCat is similar to that of a powder catalyst when used in a plug-flow reactor. [Pg.208]

In Chapter 2, the design of the so-called ideal reactors was discussed. The reactor ideahty was based on defined hydrodynamic behavior. We had assumedtwo flow patterns plug flow (piston type) where axial dispersion is excluded and completely mixed flow achieved in ideal stirred tank reactors. These flow patterns are often used for reactor design because the mass and heat balances are relatively simple to treat. But real equipment often deviates from that of the ideal flow pattern. In tubular reactors radial velocity and concentration profiles may develop in laminar flow. In turbulent flow, velocity fluctuations can lead to an axial dispersion. In catalytic packed bed reactors, irregular flow with the formation of channels may occur while stagnant fluid zones (dead zones) may develop in other parts of the reactor. Incompletely mixed zones and thus inhomogeneity can also be observed in CSTR, especially in the cases of viscous media. [Pg.89]


See other pages where Hydrodynamics axially dispersed plug flow is mentioned: [Pg.69]    [Pg.327]    [Pg.108]    [Pg.362]    [Pg.378]    [Pg.489]    [Pg.77]    [Pg.201]    [Pg.333]    [Pg.289]    [Pg.584]    [Pg.330]    [Pg.198]    [Pg.181]    [Pg.2171]    [Pg.26]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 , Pg.154 , Pg.155 , Pg.178 , Pg.221 ]




SEARCH



Axial dispersed plug flow

Axial dispersion

Axial flow

Axial hydrodynamics

Axially dispersed plug flow

Dispersive flow

Hydrodynamic dispersion

Hydrodynamics axial dispersion

Hydrodynamics plug flow

Plug flow

Plug flow dispersed

© 2024 chempedia.info