Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Screening hydrodynamic interaction

It is usual to define a screening length ( H) as the distance at which hydrodynamic interaction becomes negligible (Fig. 8) [44]. [Pg.91]

The Zimm model predicts correctly the experimental scaling exponent xx ss M3/2 determined in dilute solutions under 0-conditions. In concentrated solution and melts, the hydrodynamic interaction between the polymer segments of the same chain is screened by the host molecules (Eq. 28) and a flexible polymer coil behaves much like a free-draining chain with a Rouse spectrum in the relaxation times. [Pg.93]

A comparison with Burchard s first cumulant calculations shows qualitative agreement, in particular with respect to the position of the minimum. Quantitatively, however, important differences are obvious. Both the sharpness as well as the amplitude of the phenomenon are underestimated. These deviations may originate from an overestimation of the hydrodynamic interaction between segments. Since a star of high f internally compromises a semi-dilute solution, the back-flow field of solvent molecules will be partly screened [40,117]. Thus, the effects of hydrodynamic interaction, which in general eases the renormalization effects owing to S(Q) [152], are expected to be weaker than assumed in the cumulant calculations and thus the minimum should be more pronounced than calculated. Furthermore, since for Gaussian chains the relaxation rate decreases... [Pg.99]

Theoretical Outline — Collective Diffusion and Screening of Hydrodynamic Interactions... [Pg.109]

However, this is true only for good solvent conditions, where (c) is also the correlation length, beyond which both the excluded volume and the hydrodynamic interaction are screened and self-entanglements (intramolecular... [Pg.109]

Under -conditions the situation is more complex. On one side the excluded volume interactions are canceled and E,(c) is only related to the screening length of the hydrodynamic interactions. In addition, there is a finite probability for the occurrence of self-entanglements which are separated by the average distance E,i(c) = ( (c)/)1/2. As a consequence the single chain dynamics as typical for dilute -conditions will be restricted to length scales r < (c) [155,156],... [Pg.109]

It is generally accepted that in semi-dilute solutions under good solvent conditions both the excluded volume interactions and the hydrodynamic interactions are screened owing to the presence of other chains [4,5,103], With respect to the correlation lengths (c) and H(c) there is no consensus as to whether these quantities have to be equal [11] or in general would be different [160],... [Pg.112]

The hydrodynamic interaction is introduced in the Zimm model as a pure intrachain effect. The molecular treatment of its screening owing to presence of other chains requires the solution of a complicated many-body problem [11, 160-164], In some cases, this problem can be overcome by a phenomenological approach [40,117], based on the Zimm model and on the additional assumption that the average hydrodynamic interaction in semi-dilute solutions is still of the same form as in the dilute case. [Pg.112]

A model that can take these findings into account is based on the idea that the screening of hydrodynamic interactions is incomplete and that a residual part is still active on distances r > H(c) [40,117]. As a consequence the solvent viscosity r s in the Oseen tensor is replaced by an effective... [Pg.112]

Fig. 59. Incomplete screening of hydrodynamic interactions in semi-dilute polymer solutions. Presentation of different regimes which are passed with increasing concentration. A,C Unscreened and screened Zimm relaxation, respectively, B enhanced Rouse relaxation. (Reprinted with permission from [12]. Copyright 1987 Vieweg and Sohn Verlagsgemeinschaft, Wiesbaden)... Fig. 59. Incomplete screening of hydrodynamic interactions in semi-dilute polymer solutions. Presentation of different regimes which are passed with increasing concentration. A,C Unscreened and screened Zimm relaxation, respectively, B enhanced Rouse relaxation. (Reprinted with permission from [12]. Copyright 1987 Vieweg and Sohn Verlagsgemeinschaft, Wiesbaden)...
If a residual hydrodynamic interaction over large distances does not exist (l/r H(c) = 0), the regime of screened Zimm relaxation vanishes, and only the crossover from unscreened Zimm to enhanced Rouse relaxation remains. [Pg.113]

Fig. 64. Single-chain behavior in semi-dilute PDMS/d-chlorbenzene solutions. Line-shape parameter (3 as a function of Q at the concentration c = 0.18 and c = 0.45, indicating the occurance of two crossover effects, as predicted by the concept of incompletely screened hydrodynamic interactions. (----), (---) asymptotic Zimm and Rouse behavior, respectively. (Reprinted with per-... Fig. 64. Single-chain behavior in semi-dilute PDMS/d-chlorbenzene solutions. Line-shape parameter (3 as a function of Q at the concentration c = 0.18 and c = 0.45, indicating the occurance of two crossover effects, as predicted by the concept of incompletely screened hydrodynamic interactions. (----), (---) asymptotic Zimm and Rouse behavior, respectively. (Reprinted with per-...
With respect to the screening of hydrodynamic interactions, one is confronted with the occurrence of a multiple-transition behavior. Instead of the expected crossover from ordinary (unscreened) Zimm to enhanced Rouse relaxation, one observes, at increasing concentrations, additional transitions from enhanced Rouse to screened Zimm and from screened Zimm to enhanced Rouse relaxation. This sequence of crossover effects are highly indicative of an incomplete screening of hydrodynamic interactions. [Pg.120]

Muthukumar and Winter [42] investigated the behavior of monodisperse polymeric fractals following Rouse chain dynamics, i.e. Gaussian chains (excluded volume fully screened) with fully screened hydrodynamic interactions. They predicted that n and d (the fractal dimension of the polymer if the excluded volume effect is fully screened) are related by... [Pg.185]

We now need to add the dissipation term. A Rayleigh dissipation function will suffice for this purpose, since the hydrodynamic interactions in the.elastomer should be well screened. Let F be a matrix such that XF has elements of the form... [Pg.245]

In order to resolve these challenges, it is essential to account for chain connectivity, hydrodynamic interactions, electrostatic interactions, and distribution of counterions and their dynamics. It is possible to identify three distinct scenarios (a) polyelectrolyte solutions with high concentrations of added salt, (b) dilute polyelectrolyte solutions without added salt, and (c) polyelectrolyte solutions above overlap concentration and without added salt. If the salt concentration is high and if there is no macrophase separation, the polyelectrolyte solution behaves as a solution of neutral polymers in a good solvent, due to the screening of electrostatic interaction. Therefore for scenario... [Pg.5]

This reduces to the result of Eqs. (119) and (175) for dilute solutions ( Rg). In the Rouse regime where hydrodynamic interaction is screened, D becomes... [Pg.43]

Therefore in this Rouse regime of unentangled semidilute solutions where hydrodynamic interaction is screened, both the reduced viscosity and reduced modulus decrease with increase in polymer concentration in salt free solutions... [Pg.50]

To interpret the gel mobility experiments, a quantitative predictive model was developed that describes the compactness of the RNA constructs [115, 116]. The model takes into account polyelectrolyte effects, salt concentration, pH of the buffer, screening of the hydrodynamic interactions, flexibility of the molecule, and concentration of the gel. [Pg.171]

The preceding conclusions may be suitably checked upon comparison with PDMS. We send the interested reader to ref. 15 for the choice of the parameters. Unlike the case of PS, a molten polymer sample was also considered, in which case the hydrodynamic interaction was assumed to vanish [i.e., v(q) = 1] because of the hydrodynamic screening exerted by the polymer chains. In view of the apparently low energy barriers to the rotation around SUO chain bonds, we assumed the internal viscosity to be absent, that is. To = O Incidentally, we remark the difference from the case of polystyrene where, in addition to the intrinsic rotation barrier around C-C bonds adjoining tetrahedral-coordinated atoms ( 3 kcal/mol), the side phenyl rings contribute significantly to the rotational hindrance. In Figure 13 the characteristic times ti/2 [13/4 for the melts [115]] are plotted versus Q. [Pg.336]

For noninteracting particles D b is + D, but as the particles approach each other, the relative diffusion coefficient becomes dependent on their spatial separation. In liquids for large particles this arises from hydrodynamic interactions ( bow waves ), while in the gas phase the particles screen each other from the bath collisions. For small particles the viscoelastic projjerties of the fluid will become important near contact. The solution of Eq. (2.23) applies only for sufficiently large friction where the relative motion on all length scales is diffusive. In the other limit of very low friction, the general result obtained from molecular theory is of the form... [Pg.373]

The Rouse limit applies to unentangled polymer melts because hydrodynamic interactions are screened in melts (just as excluded volume interactions are screened in melts). Polymer dynamics in the melt state (with no solvent) are described by the Rouse model, for short chains that are not entangled. [Pg.325]

This proportionality makes sense in both limits. In the melt (= 1), both excluded volume and hydrodynamic interactions are fully screened to the level of individual monomers, so b. At the overlap concentration... [Pg.326]


See other pages where Screening hydrodynamic interaction is mentioned: [Pg.193]    [Pg.193]    [Pg.118]    [Pg.12]    [Pg.65]    [Pg.116]    [Pg.118]    [Pg.119]    [Pg.123]    [Pg.193]    [Pg.57]    [Pg.38]    [Pg.39]    [Pg.51]    [Pg.52]    [Pg.57]    [Pg.57]    [Pg.200]    [Pg.121]    [Pg.130]    [Pg.180]    [Pg.149]    [Pg.308]    [Pg.372]    [Pg.321]    [Pg.325]    [Pg.325]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Hydrodynamic interactions

Hydrodynamic screening

Hydrodynamics interactions

Interaction screening

Interactions screened

Screening of hydrodynamic interaction

Theoretical Outline - Collective Diffusion and Screening of Hydrodynamic Interactions

© 2024 chempedia.info