Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotational intrinsic

Fig. 99. pH dependence of specific rotation, intrinsic viscosity, and degree of ionization for poly-L-glutamic acid in 0.2 M NaCl-dioxane (2 1) at 25°C. (Doty ei al., 1957). [Pg.187]

A situation that arises from the intramolecular dynamics of A and completely distinct from apparent non-RRKM behaviour is intrinsic non-RRKM behaviour [9], By this, it is meant that A has a non-random P(t) even if the internal vibrational states of A are prepared randomly. This situation arises when transitions between individual molecular vibrational/rotational states are slower than transitions leading to products. As a result, the vibrational states do not have equal dissociation probabilities. In tenns of classical phase space dynamics, slow transitions between the states occur when the reactant phase space is metrically decomposable [13,14] on the timescale of the imimolecular reaction and there is at least one bottleneck [9] in the molecular phase space other than the one defining the transition state. An intrinsic non-RRKM molecule decays non-exponentially with a time-dependent unimolecular rate constant or exponentially with a rate constant different from that of RRKM theory. [Pg.1011]

Chiral Smectic. In much the same way as a chiral compound forms the chiral nematic phase instead of the nematic phase, a compound with a chiral center forms a chiral smectic C phase rather than a smectic C phase. In a chiral smectic CHquid crystal, the angle the director is tilted away from the normal to the layers is constant, but the direction of the tilt rotates around the layer normal in going from one layer to the next. This is shown in Figure 10. The distance over which the director rotates completely around the layer normal is called the pitch, and can be as small as 250 nm and as large as desired. If the molecule contains a permanent dipole moment transverse to the long molecular axis, then the chiral smectic phase is ferroelectric. Therefore a device utilizing this phase can be intrinsically bistable, paving the way for important appHcations. [Pg.194]

However, a number of examples have been found where addition of bromine is not stereospecifically anti. For example, the addition of Bf2 to cis- and trans-l-phenylpropenes in CCI4 was nonstereospecific." Furthermore, the stereospecificity of bromine addition to stilbene depends on the dielectric constant of the solvent. In solvents of low dielectric constant, the addition was 90-100% anti, but with an increase in dielectric constant, the reaction became less stereospecific, until, at a dielectric constant of 35, the addition was completely nonstereospecific.Likewise in the case of triple bonds, stereoselective anti addition was found in bromination of 3-hexyne, but both cis and trans products were obtained in bromination of phenylacetylene. These results indicate that a bromonium ion is not formed where the open cation can be stabilized in other ways (e.g., addition of Br+ to 1 -phenylpropene gives the ion PhC HCHBrCH3, which is a relatively stable benzylic cation) and that there is probably a spectrum of mechanisms between complete bromonium ion (2, no rotation) formation and completely open-cation (1, free rotation) formation, with partially bridged bromonium ions (3, restricted rotation) in between. We have previously seen cases (e.g., p. 415) where cations require more stabilization from outside sources as they become intrinsically less stable themselves. Further evidence for the open cation mechanism where aryl stabilization is present was reported in an isotope effect study of addition of Br2 to ArCH=CHCHAr (Ar = p-nitrophenyl, Ar = p-tolyl). The C isotope effect for one of the double bond carbons (the one closer to the NO2 group) was considerably larger than for the other one. ... [Pg.973]

Molecular Rotational Diffusion. Rotational diffusion is the dominant intrinsic cause of depolarization under conditions of low solution viscosity and low fluorophore concentration. Polarization measurements are accurate indicators of molecular size. Two types of measurements are used steady-state depolarization and time-dependent (dynamic) depolarization. [Pg.183]

Contrary to RPBRs, in SDRs, intensified heat transfer presents the most important advantage. Liquid reactant(s) are fed on the surface of a fast rotating disk near its center and flow outward. Temperature control takes place via a cooling medium fed under the reaction surface. The rotating surface of the disc enables to generate a highly sheared liquid film. The film fiow over the surface is intrinsically unstable and an array of spiral ripples is formed. This provides an additional improvement in the mass and heat transfer performance of the device. [Pg.303]

The statistical distribution of r values for long polymer chains and the influence of chain structure and hindrance to rotation about chain bonds on its root-mean-square value will be the topics of primary concern in the present chapter. We thus enter upon the second major application of statistical methods to polymer problems, the first of these having been discussed in the two chapters preceding. Quite apart from whatever intrinsic interest may be attached to the polymer chain configuration problem, its analysis is essential for the interpretation of rubberlike elasticity and of dilute solution properties, both hydrodynamic and thermodynamic, of polymers. These problems will be dealt with in following chapters. The content of the present... [Pg.401]

If the preceding analysis of hydrodynamic effects of the polymer molecule is valid, K should be a constant independent both of the polymer molecular weight and of the solvent. It may, however, vary somewhat with the temperature inasmuch as the unperturbed molecular extension rl/M may change with temperature, for it will be recalled that rl is modified by hindrances to free rotation the effects of which will, in general, be temperature-dependent. Equations (26), (27), and (10) will be shown to suffice for the general treatment of intrinsic viscosities. [Pg.612]

Laboratory reactors for studying gas-liquid processes can be classified as (1) reactors for which the hydrodynamics is well known or can easily be determined, i.e. reactors for which the interfacial area, a, and mass-transfer coefficients, ki and kc, are known (e.g. the laminar jet reactor, wetted wall-column, and rotating drum, see Fig. 5.4-21), and (2) those with a well-defined interfacial area and ill-determined hydrodynamics (e.g. the stirred-cell reactor, see Fig. 5.4-22). Reactors of these two types can be successfully used for studying intrinsic kinetics of gas-liquid processes. They can also be used for studying liquid-liquid and liquid-solid processes. [Pg.300]


See other pages where Rotational intrinsic is mentioned: [Pg.366]    [Pg.189]    [Pg.366]    [Pg.189]    [Pg.567]    [Pg.7]    [Pg.327]    [Pg.166]    [Pg.196]    [Pg.367]    [Pg.382]    [Pg.237]    [Pg.424]    [Pg.171]    [Pg.421]    [Pg.431]    [Pg.724]    [Pg.734]    [Pg.66]    [Pg.379]    [Pg.119]    [Pg.505]    [Pg.116]    [Pg.162]    [Pg.594]    [Pg.767]    [Pg.365]    [Pg.229]    [Pg.182]    [Pg.183]    [Pg.183]    [Pg.371]    [Pg.83]    [Pg.81]    [Pg.40]    [Pg.264]    [Pg.425]    [Pg.614]    [Pg.615]    [Pg.617]    [Pg.58]    [Pg.594]    [Pg.140]    [Pg.201]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Intrinsic rotation

Intrinsic rotation

Intrinsic rotational strength

© 2024 chempedia.info