Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons reaction with carbocations

As previously mentioned, Davis (8) has shown that in model dehydrocyclization reactions with a dual function catalyst and an n-octane feedstock, isomerization of the hydrocarbon to 2-and 3-methylheptane is faster than the dehydrocyclization reaction. Although competitive isomerization of an alkane feedstock is commonly observed in model studies using monofunctional (Pt) catalysts, some of the alkanes produced can be rationalized as products of the hydrogenolysis of substituted cyclopentanes, which in turn can be formed on platinum surfaces via free radical-like mechanisms. However, the 2- and 3-methylheptane isomers (out of a total of 18 possible C8Hi8 isomers) observed with dual function catalysts are those expected from the rearrangement of n-octane via carbocation intermediates. Such acid-catalyzed isomerizations are widely acknowledged to occur via a protonated cyclopropane structure (25, 28), in this case one derived from the 2-octyl cation, which can then be the precursor... [Pg.302]

In later studies by various groups, the enyneallene motif was incorporated into more complex hydrocarbon structures, allowing not only a better understanding of the Myers cyclization but also the generation of polycyclic hydrocarbons, some of them resembling the steroid core unit. Conceptually, these latter cyclizations are reminiscent of Johnson s biomimetic cyclization reactions with the main difference that here radical intermediates are involved rather than carbocations. Typical starting materials in these studies are the allenes 221 [87], 222 [88] and 223 [89], their cyclization behavior being discussed in Chapter 20. [Pg.214]

By analogy with their behavior in mass spectrometry, branched hydrocarbons are cleaved when oxidized in CH3 CN/TEABF4 at —45 °C. The resulting acetamides of the fragments (Table 6) are formed by cleavage of the initial radical cation at the C,C bond between the secondary and tertiary C atom, to afford after a second electron transfer, carbocations, which react in a Ritter reaction with acetonitrile [29]. [Pg.132]

Aliphatic ketones are oxidised in both acetonitrile [1,2] and trifluoracetic acid [3] at potentials less positive than required for the analogous hydrocarbons. The oxidation process is irreversible in both solvents and cyclic voltammetry peak potentials are around 2.7 V V5. see. Loss of an electron from the carbonyl oxygen lone pair is considered to be the first stage in the reaction. In acetonitrile, two competing processes then ensue. Short chain, a-branched ketones cleave the carbon-carbonyl bond to give the more stable carbocation, which is then quenched by reaction with... [Pg.300]

Two of the reactions that are used in the industrial preparation of detergents are electrophilic aromatic substitution reactions. First, a large hydrocarbon group is attached to a benzene ring by a Friedel-Crafts alkylation reaction employing tetrapropene as the source of the carbocation electrophile. The resulting alkylbenzene is then sulfonated by reaction with sulfuric acid. Deprotonation of the sulfonic acid with sodium hydroxide produces the detergent. [Pg.694]

The ability of fluoro-2 -phosphanes to transform silyl ethers into fluorides was first observed during a study of the reactions of phosphorus pentafluoride and its derivatives R PF5 (n = 1, 2, 3 R = hydrocarbon group) with trimethylsilyl ethers. Subsequently, this reaction was proposed as a new method for the preparation of C-F compounds from silyl ethers or silicic acid esters with fluoro-A -phosphanes. Pentafluorophenyl-substituted fluoro-A -phos-phanes were found to react similarily, Other workers found that tctrafluoro(phenyl)-A -phos-phane. which was chosen as the most convenient reagent with regard to reactivity and stability, gave considerable amounts of elimination products, especially with primary and cyclic alcohols. Good yields of fluorinated products are obtained when stable carbocations can be formed at the site of substitution, such as in tertiary alcohols, but 2-phcnylethanol. benzyl alcohol and diphcnylmethanol, on the other hand, give only poor yields of fluorinated products ethers and polymers are the main products. ... [Pg.134]

Since the early 1960s, superacids have been known to react with saturated hydrocarbons to yield carbocations, even at low temperature [41]. This discovery initiated extensive studies devoted to electrophilic reactions and conversions of saturated hydrocarbons. Thus, the use of superacidic activation of alkanes to their related carbocations allowed the preparation of alkanecarboxylic acids from alkanes themselves with CO. In this respect, Yoneda et al. have found that alkanes can be directly carboxylated with CO in an HF-SbFs superacid system [42]. Tertiary carbenium ions formed by protolysis of C-H bonds of branched alkanes in HF-SbFs undergo skeletal isomerization and disproportionation prior to reacting with CO in the same acid system to form carboxylic acids after hydrolysis (eq. (9)). [Pg.189]

Because the nonbonding orbital is occupied, stability increases with s character, the converse of the situation for carbocations. The order of stability of carbanions is sp < sp < sp. The relative stability of gas phase carbanions can be assessed by the energy of their reaction with a proton, which is called proton affinity. The proton affinities of the prototypical hydrocarbons methane, ethene, and ethyne have been calculated at the MP4/6-31+G level/ The order is consistent with the electronegativity trends discussed in Section 1.1.5, and the larger gap between sp and sp, as compared to sp and sp, is also evident. The relative acidity of the hydrogen in terminal alkynes is one of the most characteristic features of this group of compounds. [Pg.308]

Oxidation of Carbon Skeletons with IBX. Allylic and benzylic positions are also susceptible to oxidation by IBX. These applications are not limited to the oxidation of compounds containing a pre-existing oxygen functionality but oxidize the hydrocarbon center directly to aldehydes or ketones. These oxidations also proceed via a single-electron-transfer pathway. The oxidation of aryl methyl groups to aryl aldehydes is accomplished with 3 equiv of IBX in DMSO or DMSO/fluorobenzene mixtures at 80-90 The first two equivalents of IBX initiate the single-electron-transfer to generate a benzylic carbocation. Subsequently, the reaction with water affords the alcohol in situ and the third equivalent of IBX completes the conversion to the desired benzaldehyde (eq 13). ... [Pg.208]

Non-volatile tritium-labelled compounds have been produced, but the degree of polymerization has been found to be not very high since the intermediate carbocations participate also in other reactions which lead to shortening of the chain length (equation 132). Reaction 132c seems to be the most probable. No simple saturated aliphatic hydrocarbon has been formed in the system C H3 — CH2=CH2 . In a mixture consisting of C H3, CH2—CH2 and H2O no n-alcohols containing more than two carbon atoms have been detected. This means that the isomerization of the carbocations formed is a faster process than their reactions with water or with ethylene. The reaction... [Pg.848]

The reverse reaction of the protolytic ionization of hydrocarbons to carbocations, that is, the reaction of trivalent carbocations with molecular hydrogen giving their parent hydrocarbons, involves the same five-coordinate carbonium ions. [Pg.163]

The synthetic procedures for isolation of the salt appear to be rather simple. First, one prepares a solution in which the carbocation and carbanion coexist free from any combination reactions. Then, the hydrocarbon cation-anion salt is isolated after separation of the concomitant inorganic salt and evaporation of the solvent. For the purification of the crude salt recrystallization or reprecipitation with proper solvents is used. [Pg.175]

As thermodynamic stability indexes for the hydrocarbon ions, pA R+ and pA a values [(4) and (5)] have been widely applied for the carbocation and carbanion, respectively, in solution. Here K + stands for the equilibrium constant for the reaction (6) of a carbocation and a water molecule stands for the equilibrium constant for the reaction (7) of a hydrocarbon with a water molecule to give the conjugate carbanion. The equilibrium constants are given by (8) and (9) for dilute aqueous solutions. Obviously, the reference system for the pKn+ scale is the corresponding alcohol, and... [Pg.178]

Normally, only a small stoichiometric excess (2-30 mol%) of silane is necessary to obtain good preparative yields of hydrocarbon products. However, because the capture of carbocation intermediates by silanes is a bimolecular occurrence, in cases where the intermediate may rearrange or undergo other unwanted side reactions such as cationic polymerization, it is sometimes necessary to use a large excess of silane in order to force the reduction to be competitive with alternative reaction pathways. An extreme case that illustrates this is the need for eight equivalents of triethylsilane in the reduction of benzyl alcohol to produce only a 40% yield of toluene the mass of the remainder of the starting alcohol is found to be consumed in the formation of oligomers by bimolecular Friedel-Crafts-type side reactions that compete with the capture of the carbocations by the silane.129... [Pg.12]

In a similar fashion, 2-cumyladamantane (12, R = Ph) is formed in nearly quantitative yield upon treatment of the easily synthesized 2-cumyl-2-adaman-tanol (11, R = Ph)154 with triethylsilane and methanesulfonic acid in dichloromethane at —78°.155 The high yield of a single very strained hydrocarbon product in each reaction is quite surprising in view of the very complex interconversions of carbocations known to take place from the alcohol precursors.140,151 152 156... [Pg.16]

The behavior of members of the bicyclo[2.2.1]heptene family is also different from that of other common 1,2-disubstituted alkenes.230 The parent bicy-clo[2.2.1]heptene gives bicyclo[2.2.1]heptane in only 3.5% yield when it is treated with Et3SiH/TFA. The major product is reported to be a 2-bicyclo[2.2.1]heptyl trifluoroacetate of unspecified configuration (Eq. 70).230 The carbocation intermediate is presumably the 2-norbornyl cation. Addition of small amounts of boron trifluoride etherate to the reaction mixture causes the yield of hydrocarbon product to rise to 22% after a reaction time of 24 hours at room temperature. Further... [Pg.36]


See other pages where Hydrocarbons reaction with carbocations is mentioned: [Pg.2]    [Pg.33]    [Pg.350]    [Pg.135]    [Pg.103]    [Pg.204]    [Pg.120]    [Pg.88]    [Pg.280]    [Pg.186]    [Pg.185]    [Pg.134]    [Pg.134]    [Pg.122]    [Pg.133]    [Pg.280]    [Pg.649]    [Pg.362]    [Pg.292]    [Pg.686]    [Pg.221]    [Pg.47]    [Pg.199]    [Pg.326]    [Pg.147]    [Pg.167]    [Pg.256]    [Pg.786]    [Pg.239]    [Pg.349]    [Pg.28]   
See also in sourсe #XX -- [ Pg.786 ]




SEARCH



Carbocation reactions

Carbocations reactions

Carbocations reactions with

Hydrocarbons, reactions

Reaction with hydrocarbons

© 2024 chempedia.info